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SUMMARY

Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interac-
tions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast can-
cer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics
cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with
detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor frag-
ments, and in vivo models. Through this comprehensive approach, we construct a network comprising
co-alterations and mutually exclusive events and characterize their therapeutic potential and underlying bio-
logical basis. Notably, we identify associations between TP53"“'-AURKA®™ and endocrine therapy resis-
tance, germline BRCA1™-MYC® P and improved sensitivity to PARP inhibitors, and TP53™“'-MYB?™ and
immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alter-
ations hold promise to improve patient outcomes. Our study highlights the significance of genetic interac-

tions in guiding genome-informed treatment decisions beyond single driver alterations.

INTRODUCTION

Precision oncology has revolutionized the therapeutic landscape in
breast cancer by introducing new therapeutic options through the
ongoing appreciation of cancer genomes and routine application of
next-generation sequencing.“3 Genome-targeted or genome-
informed therapies, such as anti-ERBB2-targeted therapies or
PARP inhibitors (PARPI), have improved outcomes in patients
with specific genomic alterations.* While clinical success buoys ef-
forts in precision treatment, efficacy remains limited due to the pre-
vailing focus on single driver alterations in clinical decision-making,
disregarding the impact of co-occurring genomic alterations on
clinical outcomes.®® Furthermore, the advent of promising agents
such as immunotherapy complicates the accurate prediction of
therapeutic responses, necessitating the identification of novel bio-
markers beyond single driver alterations.” Given these challenges,
there is a compelling need to direct attention toward genetic inter-
actions to effectively guide precision treatment.

Cancer initiation is orchestrated by the convergence of genetic
alterations occurring sequentially within multiple genes, exhibit-
ing non-random and regulated patterns.® The observed co-
occurrence or mutual exclusivity of these genetic alterations
may reflect the existence of genetic interactions, thus delineating
distinct functional relationships. Specifically, mutual exclusivity

L)

suggests either functional redundancy or antagonism,’ dictating
synthetic lethal interactions with therapeutic potential in patients
lacking targetable alterations.® Conversely, co-occurrence re-
flects functional cooperation,'® suggesting synthetic rescue in-
teractions and possible resistance to treatment targeting one
of the co-alterations."’ Recent efforts have provided insights
into non-random patterns of particular driver alterations.’®'®
Mutual exclusivity has been investigated across various tumor
types,’>"'” while certain instances of co-occurring alterations
have presented associations with clinical outcomes and micro-
environment compositions.'®'®?* CRISPR and compound
screening have also provided evidence of the interplay between
specific oncogenic alterations.?>>° Despite a growing focus on
co-occurrence and mutual exclusivity, clinical consequences
behind these events have not been fully elucidated.

Overall, ongoing new insights into cancer genome necessitate
a focus on co-occurrence and mutual exclusivity of genomic al-
terations. To investigate their biological properties and discern
the impact on treatment outcomes, we deliver a large-scale
multi-omics cohort (FUSCC-BRCA) alongside a well-annotated
prospective targeted sequencing cohort (FUSCC-CIinSeq).
These findings may therefore improve our ability to explain vari-
ations in treatment response and complement ongoing efforts in
precision oncology.
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RESULTS

Patient samples, clinical data, and study cohorts

To systematically explore the underlying biology and clinical
relevance of co-occurring and mutually exclusive genomic alter-
ations, we established a large-scale multi-omics cohort, namely,
the FUSCC-BRCA cohort, and a prospective clinical sequencing
cohort, namely, the FUSCC-ClinSeq cohort.

FUSCC-BRCA features multi-omics data, clinicopathological
details, and clinical outcomes of 873 Asian breast cancer pa-
tients (Figure 1; Table S1). All 873 patients had both whole-
exome sequencing data on primary tumor tissues and paired
blood samples and somatic copy number alteration (CNA)
data; 842 patients had RNA sequencing data; 261 patients had
tandem mass tags-based mass spectrometry quantified protein
data; and 509 patients had metabolomic data. We used this
cohort to identify co-occurrence and mutual exclusivity of
genomic alterations, investigate their interactions with treat-
ment, and characterize their molecular biology according to
detailed annotation and complete omics data.

FUSCC-ClinSeq represents a prospective cohort of targeted
sequencing on matched tumor and blood samples from 4,405
Asian breast cancer patients, with detailed treatment records.
Notably, this cohort encompasses several clinical trials such as
NCT04613674, NCT03805399, NCT04395989, NCT04355858,
and NCT04129996. There were three subcohorts (Figure 1;
Table S1): 2,418 early-stage patients receiving surgery and adju-
vant therapy, 1,373 locally advanced patients undergoing neoadju-
vant therapy followed by surgery, and 614 advanced patients
receiving salvage treatment. This cohort was used to investigate
co-occurrence and mutual exclusivity involving germline alter-
ations and explore their therapeutic impact.

To comprehensively interpret the co-occurrences and mutual
exclusivities, we also included TCGA-BRCA (n = 983), MSK-
IMPACT (n = 1,918), METABRIC (n = 2,509), AACR Project
GENIE (n = 13,308), MSK-MetTropism (pan-cancer; n = 25,775),
PCAWG (pan-cancer; n = 2,922), and CPTAC breast cancer
(n = 122) cohorts for external validation and biological character-
ization (Figure 1). The clinicopathological features of different co-
horts were summarized in Table S1. Furthermore, we established
a drug-testing platform containing patient-derived organoids
(PDOs), tumor fragments (PDTFs), and in vivo xenografts or iso-
grafts for functional validation (Figure 1; Table S1).

Collectively, we established a multi-omics cohort, a clinical
sequencing cohort, and a drug-testing platform, together with
multiple external cohorts, to systematically characterize the un-
derlying biology and clinical relevance of co-occurring and mutu-
ally exclusive genetic events.

Molecular landscape of the FUSCC-BRCA cohort

We present a well-annotated landscape of the FUSCC-BRCA
cohort (Figure 2A). Consistent with previous studies,?”?® the prev-
alent genetic alterations in breast cancer included TP53 alter-
ations (47.8%), PIK3CA alterations (37.7%), and MYC amplifica-
tions (19.5%). The distribution of genomic alterations varied
among different clinical subtypes, with TP53 alterations occurring
in 78.4% of triple-negative breast cancers (TNBC) and ERBB2 al-
terations being most frequent in HER2-positive breast cancer
(85.0% in HR+HER2+ and 80.6% in HR-HER2+ subtypes).
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We then investigated the differences in the genome profiles of
the FUSCC-BRCA cohort with TCGA cohort (Figure S1A;
Table S2). Notable differences include lower occurrences of
CDH1 mutation (3.6% in FUSCC-BRCA versus 17.9% in TCGA
Caucasians; FDR < 0.001) and higher occurrences of TP53 mu-
tation (26.5% in FUSCC-BRCA versus 17.1% in TCGA Cauca-
sians; FDR = 0.006), AKT1 mutation (7.6% in FUSCC-BRCA
versus 3.4% in TCGA Caucasians; FDR = 0.035), and PIK3CA
amplifications (7.6% in FUSCC-BRCA versus 2.1% in TCGA
Caucasians; FDR = 0.004) in HR+HER2- subtype, as well as
higher prevalence of ERBB2 amplifications (82.4% in FUSCC-
BRCA versus 51.3% in TCGA Caucasians; FDR < 0.001) in
HER2+ subtype. Collectively, we presented a comprehensive
landscape and highlighted the racial disparities in genomic alter-
ations in Asian patients with breast cancer.

Selection of cancer driver genes and functional
alterations

Before identifying co-occurrences and mutual exclusivities, we
compiled a list of cancer driver genes, including 457 oncogenes,
477 tumor suppressor genes, and 75 cancer predisposition genes
(Figure S1B; Table S3). Utilizing dNdScv and MutSigCV
(Table S8), we identified four additional significantly mutated
genes in the FUSCC-BRCA cohort, namely, AMY2A, ZFPM1,
RBMXL2, and SOX10, which were also integrated into the cancer
driver gene list. In the FUSCC-BRCA cohort, HR+HER2- tumors
presented higher mutation frequencies in AMY2A, RBMXL2, and
ZFPM1 compared to TCGA Caucasians, with no notable differ-
ence observed in SOX10 (Figure S1C). Further external validations
are necessary to confirm the observed difference.

We then retained the somatic oncogenic alterations and germ-
line pathogenic/likely pathogenic variants for functional interpre-
tation of co-occurrences and mutual exclusivities. For CNAs, we
concentrated on actionable CNAs at the gene level rather than at
the region of interest level for clinical interpretability (Table S3).
We incorporated the functional alterations of the cancer driver
genes for the discovery of co-occurrences and mutual exclusiv-
ities (Figure 2A; Table S3).

Network construction of co-occurrences and mutual
exclusivities

To infer interactions between functional alterations, we per-
formed Selected Events Linked By Evolutionary Conditions
Across Human Tumors (SELECT)'#"'® analysis within the entire
FUSCC-BRCA cohort accounting for breast cancer subtypes
and within individual clinical subtypes. The resulting network
comprised 50 co-occurring events and 30 mutually exclusive
events (Figure 2B; Table S3). Validated known events included
the co-occurrence of TP53 mutation and MYC amplification
and the mutual exclusivity of PIK3CA and AKT1 mutations."
Additionally, we also identified events previously unreported,
such as co-occurring TP53™-MYB®™. For germline variants,
only the co-occurring gBRCA1™!:-MYC®™P was found due to
the low prevalence and limited FUSCC-BRCA cohort size.
Therefore, we performed SELECT analysis within the FUSCC-
ClinSeq cohort separately and found additional 4 co-alterations
and 8 mutually exclusive alterations involving germline variants,
such as the co-occurring gBRCA1™!-TP53™ " and the mutually
exclusive gBRCA2™-gPALB2™ (Figure S2A).
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Figure 1. Schematic overview of the study design
See also Table S1.

Cancer Cell 42, 701-719, April 8, 2024 703



- ¢? CellPress

Cancer Cell

A Clinical subtype
intrinsic subtyoe ||| 111 INFUT EAPANEAWAENRIARARRADTAMNIET AN DO DU N0R O [T T TETT T T
B | (LI I I 1T I IV
HRD [0 A | \ \ D0 A A 0
Genome doubling II/NLIIL IARVINAAVLINIIY | 1 (K0 COLEALOE I (000 RCIDL I (R B LR L LT
Gustered mutation | I[NNI O 0 Y FERIOO DU el O i IMIANID o 200 400
TP53 —(— 28% Ne—] 53% Nmmm | 619 m————————————— 78% I
PIK3CA il L 1| 44 wul m (44 w A |35 impimil =] 26 [
myc L IR 100 1A [l | 13 [0 0 16 QU0 (16 [HINEE  [HE  |I/H 33 [N
ERBB2 | |1 [} (1, 6 ININN s [NNIME st || ) o vl 4 e
cenot|[ILTIE M 1011 111 I . 17 [LIIMNEL24 1 111 8 [ Ll 1 je mm
mom4] I T LT Mneer m 15 JIMRLNNT26 (WA 15 [ 111 | w11 /s ma
Loz 11T 1 IO | [ N 14 Il e IIL s [ | 1l 7 M
PTEN|E [ [0 frv wjo AN ] 8 [l s [l 3 [l h [ bprd 17 EH
neoAz|l LRI TN 1 [ T | o LT 118 114 Fje [0 TNEIL 0011 I+ m
PAKT|l LT WUIH 1 I e 12 (LI [ s e e 1 jsa m
AT\ Tl ([ 7 LI T Ll 3 [ W1 R 12
mect [T 1 11| Il 4 |l 1le [ )3 TEMIEr (e rnm e M
GATA3 11 nol o LR TRl 13 1In ns 0 1 1 <t 1B
NTRKT| | || 11 T T 6 LI I1e [ 2 [LTEMIeErn mmen rrmij+s m
AURKA| I TN Il | [ 11 LA ] T =T T < O O I I 4 0
MAP3K1 11 [T IR TR i (NI 10 0 I 5 | 1 <1 N
mys| |l I I [ 4 i 13 - | Vo I - |
ToP24 | | | [ [ | 2 I 2 [IHm (34 | | | I 2 i
sero2| | L] [v Iw | | | [ 6 || Il 4 [T T A N N 1+ e N
KMT2C 1 11 LI O T T T I R B B R ] 6 1 3 1 3 0noom 1 ouron6 | |
Foxat | i (N (I I 6 Il I 15 | 2 [ [ 3 1
AKT1 o 1 o mn i nm 8 1 1 0 [ 11 13 | |
KRAS (. ! LI I I [ ]2 |5 (D T T I e |
gBRCA2 1 [ O N 1T R I R | 3 11 12 [ 1 1 2 1
gBRCA1 0 1 1 0 [N T T T 118 1
gRAD51D [ <1 0 0 1 [N 13 |
Clinical subtype Intrinsic subtype TMB  HRD
BHR+HER2- [HR+HER2+ [ HR-HER2+ ETNBC BLumA [LumB MHer2 MBasal | Normal i:e gg
Genome doubling & Clustered mutation Variant classification 2 ;g
MPresence i iAbsence Unknown == Truncating == Missense == In-frame indel Bl Amplification [l Deletion 0 0
B

m

CDH1

(ErRBB2] [ AR ]

[ AKT3 |(ccnD3)

[ PAK1 |PDGFRA(_KIT J[ATRX ][ CDKé6 )

\ﬁ
FANCA|(PIK3RT FOXAT) @AP3K)(AKTT) (GATA3) [ KRAS ) CDKN2B

ALK

EGFR

((JaKz2 ) (cp274)(GPs2)(ccnpz2)(CRB1)

(sTK11)

ESR1 PTEN )| FGFR1 IGF2 MYB RAF1 ||RICTOR|| MYCN FGFR2|| MCL1 || SETD2 |( SF3B1

— Co-occurrence () Mutation

— Mutual exclusivity D Amplification [(MDm4](NCOAS)(CREL ][_SRC ](NCOA2) ATM
[ Deletion

== Validated in 2 3 cohorts

Figure 2. Systematic analysis of co-occurrences and mutual exclusivities in breast cancer

(A) Molecular landscape of the study cohort.

(B) Networks of co-occurring and mutually exclusive genomic alterations. See also Figures S1-S4 and Tables S2-54.

We also created a network involving hotspot mutations (Fig-
ure S2B). Interestingly, despite global mutual exclusivity in the
PI3K pathway, co-occurrence between PIK3CA.E542 and PIK3-
CA.E726 was observed, which was associated with increased
oncogenicity and sensitivity to PI3Ko. inhibitors.°

To interpret the associations with breast cancer subtypes, we
compared co-alteration frequencies across different clinical and
intrinsic subtypes. Significant differences were observed for
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most events (Figures S2C and S2D). For example, TP53™!-
MYC3™ and TP53™-KRAS®™ were more prevalent in TNBCs
or the basal-like subtype, while PIK3CA™'-MAP3K1™" was
more common in HR+HER2- breast cancers and the luminal A
subtype.

We then focused on racial disparities and compared the fre-
quency of each co-alteration between FUSCC-BRCA and
TCGA Caucasians or African Americans (Figure S2E). After
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adjusting for the differential incidence of individual alterations,
we observed higher incidence of co-occurring TP53™'-
KRAS®™ within TNBCs when comparing FUSCC-BRCA with
TCGA Caucasians (10.4% in FUSCC-BRCA versus 3.3% in
TCGA Caucasians; p = 0.042).

Overall, our network highlights co-occurrence and mutual ex-
clusivity patterns in breast cancer and reveals subtype-specific
and race/ethnicity-specific distributions.

Validation of co-occurrences and mutual exclusivities in
independent cohorts
To validate the co-occurrences and mutual exclusivities, we per-
formed SELECT analysis across multiple cohorts, including
FUSCC-ClinSeq, TCGA-BRCA, MSK-IMPACT, METABRIC,
GENIE, MSK-MetTropism (pan-cancer), and PCAWG (pan-can-
cer) cohorts. Notably, 65.0% (52 out of 80) of the co-occurring
and mutually exclusive events were validated in at least one in-
dependent cohort, and 38.8% (31 out of 80) of these events
were validated in at least three cohorts. In addition, we further
complemented the validation by literature review. Overall, a total
of 68.8% (55 out of 80) of the events were validated in at least one
independent cohort or through a literature review (Table S4).
To confirm the biological interactions rather than a random
statistical estimation, we first investigated Euclidean distance
to discern the global diversity in transcriptomic properties and
polar and lipid metabolism. Our analysis indicated that co-
altered tumors presented the most significant diversity in these
aspects (Figure S3), highlighting the distinct biological basis
among tumors with and without co-alterations. Subsequently,
clonality analysis revealed that 92.9% (593 out of 638) of the
co-occurring genomic alterations indeed occurred within a
shared clone (Figure S4A), further supporting potential biological
interactions between the co-occurring events. Additionally, we
mapped the validated co-occurrences and mutual exclusivities
onto the IntAct protein-protein interactome. Proteins presenting
co-occurring interactions shared more interactors (nodes) than
those of mutually exclusive interactions (Figure S4B), indicating
potential functional synergy in specific biological processes.
For example, BRCA1 and MYC share 44 interactors and enrich-
ment analysis of these interactors suggested a functional collab-
oration in DNA repair pathways (Figures S4C and S4D). Similarly,
TP53 and AURKA share 13 interactors, which were enriched in
cell cycle pathways (Figures S4E and S4F). Taken together, we
statistically and biologically validated the co-occurrences and
mutual exclusivities and suggested potential functional interac-
tions in specific biological processes.

Co-alterations are associated with treatment outcomes
To provide further insight into co-alterations, we associated
these genomic events with patient survival and treatment out-
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comes (Figure 1). Our primary focus was on the prognostic ef-
fects of co-alterations with frequencies exceeding 1% on distant
metastasis-free survival (DMFS) and overall survival (OS) (Fig-
ure 3A; Table S5). Based on a multivariate Cox proportional haz-
ards model adjusting for baseline factors of age, histology, tumor
size, and lymph node status, we observed that co-occurring
PIK3CA™-FOXA1™" was associated with poorer DMFS, while
both TP53™'-MYB®™ and TP53™“!-CCNE1?™ were indicative
of worse OS within the TNBC subtype.

Furthermore, we investigated co-occurring alterations that
might predict treatment response in adjuvant, neoadjuvant,
and advanced settings per subtypes (Figure 3B; Table S5). In
addition to prognostic effects generally associated with patient
outcomes, this investigation aimed to determine the efficacy of
a particular treatment for patients with and without a specific
co-alteration. Specifically, within the HR+HER2- subtype, we
found that TP53™'-"AURKA®™ carriers treated with adjuvant
tamoxifen exhibited a higher risk of distant metastasis than non-
carriers did, while TP53™-MYC?™ carriers demonstrated a
more favorable response. Among HER2+ patients, the co-occur-
ring TP53™-CCNE1%™ was associated with a higher likelihood
of achieving a pathologic complete response (pCR) when treated
with neoadjuvant trastuzumab-pertuzumab combinations. For
TNBCs, the co-occurring TP53™“'-MYB®™ correlated with infe-
rior immunotherapy efficacy in both the neoadjuvant and
advanced settings. In addition, advanced gBRCA1™!-MYC3"P
carriers exhibited an increased objective response rate (ORR)
to PARPI.

Collectively, we provided an overview of the association be-
tween co-alterations and treatment responses in diverse set-
tings. These findings may help extend clinical interpretation
and application of next-generation sequencing for optimized
therapeutic benefit.

TP53™"*.AURKA®™" indicates endocrine resistance in
the HR+HERZ2- subtype

Initial analysis revealed an interaction between co-alterations
and treatment outcomes, warranting in-depth investigation into
their biological basis. For clinically relevant co-occurring events,
specifically the co-occurring TP53™"-AURKA®™, gBRCA1™ -
MYC?™  and TP53™"-MYB?™, we deployed a comprehensive
validation strategy encompassing diverse methodologies,
including clinical validation, multi-omics analyses, and functional
validation with mechanistic exploration (Figure 1).

Regarding the co-occurring TP53™'-AURKA®™ (Figure 4A),
we found that patients with this co-alteration treated with adjuvant
tamoxifen experienced a worse prognosis than did those without
this co-alteration, as confirmed by both univariate and multivariate
analyses (Figures 4B and 4C). Multivariate analysis further re-
vealed a higher risk of distant metastasis in co-altered patients

Figure 3. Associations between co-alterations and patient outcomes

(A) Association between co-alterations and patient survival. Only significant associations are highlighted (p value < 0.05 and FDR < 0.25). Multivariate Cox
proportional hazards model was used to adjust for age, histology, tumor size, and lymph node status.

(B) Co-alteration-treatment interactions. Only significant interactions were highlighted (p value < 0.05 and FDR < 0.25). For distant metastasis-free survival
(DMFS), a multivariate Cox proportional hazards model with a co-alteration-treatment interaction term was used to adjust for age, histology, tumor size, and
lymph node status. For pathologic complete response (pCR), a multivariate logistic regression model with a co-alteration-treatment interaction term was used to
adjust for age, histology, tumor size, and lymph node status. For objective response rate (ORR), a multivariate logistic regression model was used to adjust for

age. See also Table S5.
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compared to TP53™!-AURKA"! patients (hazard ratio [HR], 3.97;
95% confidence interval [Cl], 1.31-11.99; p = 0.014). We further
validated the survival difference in HR+HER2- patients within
the METABRIC cohort, where co-alteration carriers demonstrated
worse relapse-free survival (Figure S5A).

A subsequent investigation was performed to explore the
underlying biological basis. Downstream analysis revealed upre-
gulated G2/M-related pathways, supported by comprehensive
transcriptomic, proteomic, and phospho-proteomic data (Fig-
ures 4D and S5B-S5D). Further exploration revealed increased
CNAs and expression of G2/M transition genes, suggesting po-
tential dysregulation of G2/M phase (Figure 4E). Previous investi-
gations have established the association between centrosome
amplification and AURKA expression in the context of P53 defi-
ciency.>**' Consistently, tumors carrying co-occurring TP53™'-
AURKA?™ exhibited higher centrosome amplification score and
aneuploidy score (Figure 4F), a recognized manifestation of
centrosome amplification.>> Additionally, we observed decreased
expression of CUL7 and CUL9 (Figures 4G and 4H), which was
associated with aneuploidy as reported in previous studies.®*%*
Since centrosome amplification is a potential contributor to drug
resistance,*>*° these findings suggest that centrosome amplifica-
tion may be the mechanism underlying TP53™“-AURKA®™"-
induced endocrine therapy resistance.

Metabolic reprogramming has been identified as a key
mechanism of endocrine resistance.®” To investigate the asso-
ciation between TP53™"-AURKA®™ and metabolic dysregula-
tion, network analyses revealed increased perturbations in lipid
metabolism rather than polar metabolism (Figures S5E-S5G).
We further conducted KEGG metabolic pathway-based
differential abundance (DA) analysis between co-altered and
single-altered tumors to determine the dysregulated metabolic
pathways associated with endocrine resistance. Interestingly,
we observed a high DA score for metabolites involved in
glycerolipid and sphingolipid metabolism (Figure S5H),
pathways associated with cell division,®® and endocrine
resistance.**

Cancer Cell

To validate the effect of TP53™"-AURKA®™ co-alteration on
endocrine therapy sensitivity, we performed drug response tests
using in vitro cell lines, PDOs, in vivo mini patient-derived xeno-
graft (mini-PDX), and in vivo xenograft models. We first
compared tamoxifen sensitivity among PDOs with different co-
altered statuses and observed that PDOs harboring the
TP53™ . AURKA®™ co-alteration exhibited the highest viability,
indicating a reduced response to 40H-tamoxifen, followed by
TP53™LAURKAY!, TP53"'-~AURKA®™, and TP53"'-AURKA"!
PDOs (Figure 4l). Next, we selected the MCF7 cell line as it has
a wild-type TP53 genotype.“® Given that a significant portion of
TP53 mutations in our cohort manifest as loss-of-function muta-
tions (Figure 2A), we established MCF7 cell lines with different
genetic backgrounds by knockout of endogenous TP53
(TP53X9) and stable overexpression of AURKA (AURKACE)
(Figures 4J and S5I). In vitro viability assays demonstrated
decreased sensitivity to tamoxifen in TP53°-AURKA®E MCF7
cells compared with the control cells (Figure S5J). Consistently,
TP53™AURKA®™ co-altered mini-PDX models presented
decreased sensitivity to endocrine therapy (Figures 4K and 4L).
In vivo xenograft assays further confirmed larger tumor volumes
in TP53KC-AURKA®E models compared to other groups
following tamoxifen treatment (Figure 4M). These data collec-
tively suggested an association between co-occurring
TP53™ AURKA®™ and decreased tamoxifen responsiveness.

To validate the hypothesis that TP53™-AURKA®™ could
induce centrosome amplification, we used immunofluorescence
to evaluate centrosome levels in MCF7 cells with different genetic
backgrounds. As expected, TP53“C-AURKACE MCF7 cells, repre-
senting TP53™"-AURKA®™ genotype, exhibited a higher fre-
quency of centrosome amplification (Figures 4N and 40). Given
previous reports associating centrosome amplification with drug
resistance,*>*° these results suggest that centrosome amplifica-
tion might underlie TP53™"-AURKA®™-induced resistance to
endocrine therapy. While TP53 mutation contributes to CDK2/4
dysregulation,”’** we subsequently treated TP53™"-~AURKA®™
PDOs with PF3600 (a CDK2/4/6 inhibitor) and alisertib (an

Figure 4. TP53™"'-AURKA®™ confers endocrine resistance in the HR+HER2- subtype
(A) Oncoplot showing the co-occurring pattern between TP53 mutation and AURKA amplification.
(B) Kaplan-Meier curves of distant metastasis-free survival in patients treated with adjuvant tamoxifen harboring different statuses of TP53™/-"AURKA®™.

p values were estimated and compared based on the log rank test.

(C) Adjusted hazard ratios and 95% confidence intervals of different statuses of TP53™“-~AURKA®™ in tamoxifen-treated patients. A multivariate Cox propor-

tional hazards model was adjusted for age, tumor size, and lymph node status.

(D) Gene set enrichment analysis showing upregulated cell cycle pathways within the TP53™“!-AURKA®™ tumors.
(E) Copy number alterations and gene expression in G2/M transition pathway across tumors with different co-alteration statuses.
(F) Comparison of centrosome amplification (CA20 signature) and aneuploidy scores across different co-alteration statuses. p values were obtained from

Kruskal-Wallis test. ***, p < 0.001.

(G and H) Expression of CUL7 (G) and CUL9 (H) grouped by different co-alteration statuses. Each boxplot presented the median values and 1.5 X interquartile

ranges. p values were obtained from logistic regression.

(I) Representative images of patient-derived organoids (PDOs) with different co-alteration statuses (left) and viability of PDOs with different co-alteration statuses
treated with 4OH-TAM. Data are presented as mean + SD. Scale bar: 100 uM. p values were obtained from Student’s t test. ***, p < 0.001.

(J) MCF7 cell lines with different genetic backgrounds through TP53 knockout (TP534C) and AURKA overexpression (AURKA®E).

(K) Scheme of the generation of mini-PDX models for in vivo pharmacological tests.

(L) Relative viability of HR+HER2- mini-PDX models with tamoxifen treatment normalized to that of vehicle treatment. Data are presented as mean + SD. p values

were obtained from Student’s t test. **, p < 0.01; *, p < 0.05.

(M) Growth curves and tumor weights at the endpoint across tumors with different co-alteration statuses treated with tamoxifen. Data are presented as
mean + SD. p values were obtained from Student’s t test. “**, p < 0.001; ns, not significant.

(N) Cells stained for microtubules (x-tubulin, red), centrioles (centrin-3, green), and DNA (DAPI, blue) across different co-alteration statuses. Scale bar, 10 um
(O) Histogram showing the fraction of cells with centrosome amplification across different co-alteration statuses. Error bars represent mean + SD from 3 in-
dependent experiments. p values were obtained from Student’s t test. ***, p < 0.001; **, p < 0.01. See also Figure S5.
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Figure 5. gBRCA1™*-MYC®™P suggests potential response to PARP inhibitors

(A) Oncoplot showing the co-occurring pattern between germline BRCA1 mutation and MYC amplification.

(B) Objective response rate stratified by the statuses of gBRCA7T™!-MYC*™ within HER2-negative patients treated with PARP inhibitor. Multivariate logistic
regression was performed to obtain p values after adjusting for age, lines of previous cancer therapy, and hormone receptor status. R, responder; NR, non-
responder.

(legend continued on next page)
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AURKA inhibitor) to mitigate the effects of TP53 mutation and
AURKA amplification,*® respectively. This treatment substantially
inhibited both the growth of TP53™-AURKA®™ PDOs
(Figures S5K and S5L) and the occurrence of centrosome amplifi-
cation in TP53XC-AURKA®E MCF7 cells (Figure S5M).

Taken together, these findings suggest that the co-occurrence
of TP53™_AURKA®™ potentially exerts synergistic effects on
conferring endocrine resistance through G2/M dysregulation
and centrosome amplification.

Co-occurring gBRCA 1™ -MYC®™P as an indicator of
increased genome instability and enhanced response

to PARPi

Individuals with germline BRCA1 pathogenic variants have demon-
strated promising responses to PARPi therapy.** However, vari-
able efficacy within this population highlights the necessity for
refined biomarker stratification.*> We initially identified co-occur-
ring gBRCA1 mutation and MYC amplification in 56.5% of
gBRCAT-mutated patients (Figure 5A). Subsequent analysis
focused on PARPI response in gBRCA1-mutated patients with or
without MYC amplification, revealing significantly higher ORR in
co-altered patients (Figure 5B). Notably, one TNBC patient with
chestwall recurrence harboring co-occurring gBRCA1™-MYC?™P
experienced notable tumor shrinkage after one cycle of
PARPI treatment (Figure S6A). Genetic dependency analysis of
the BRCA1™.-MYC*™ cancer cell lines also indicated greater
sensitivity to the knockout of genes involved in DNA repair
(Figure S6B).

Given the divergent efficacy, we further investigated the biolog-
ical alterations caused by co-occurring MYC amplification in
gBRCAT-mutated TNBC. We observed an increased chromo-
somal instability score (Figure 5C), elevated activity of CX5 copy
number signature associated with homologous recombination
repair deficiency with replication stress (Figures 5D and S6C),
and heightened homologous recombination deficiency (HRD)
score in co-altered tumors (Figure 5E). Notably, the telomeric allelic
imbalance exhibited the most significant difference in relation to
HRD (Figure 5F), followed by loss of heterozygosity (LOH) and
large-scale state transitions (Figures 5G and 5H). Transcriptomics

Cancer Cell

analysis further supported downregulated DNA repair pathways
(Figure 5I). The collective data suggested elevated DNA damage
and decreased repair capacity withingBRCA1™-MYC®™ tumors.

We then focused on the dysregulated metabolism associated
with co-occurring gBRCAT™!-MYC®™. Network analyses re-
vealed downregulated lipid metabolism (Figure S6D), but not
glycerolipid metabolism (Figure S6E). In addition, co-altered tu-
mors exhibited notable difference from single-altered tumors in
terms of polar metabolism (Figure 5J), particularly in nucleotide
metabolism (Figure 5K). Previous studies have confirmed that
dysregulation of nucleotide metabolism is associated with
increased DNA damage.*®*” Metabolic pathway-based DA
analysis also supported the upregulated nucleotide metabolism
and glycerolipids (Figure S6F). Overall, the co-altered tumors ex-
hibited distinct metabolic patterns.

Subsequently, we validated the impact of co-occurring
gBRCA1™'-MYC®™ on PARPI sensitivity by employing PDOs
and in vivo mini-PDX models. Initial investigations using PDOs
revealed reduced viability of gBRCA1™"-MYC*™ compared to
gBRCA1™!-MYC" when exposed to olaparib, whereas no sig-
nificant difference was observed between gBRCAT“!-MYC?™P
and gBRCA1"!-MYC"! PDOs (Figures 5L and 5M). Consistently,
mini-PDX models with gBRCA1™!-MYC®™ exhibited increased
sensitivity to PARPi (Figure 5N). These data collectively sup-
ported the association between co-occurring gBRCA1™-MY-
C?™ and improved PARPI sensitivity.

Multi-omics analysis revealed that gBRCA1™-MYC®™ tumors
exhibit increased DNA damage, rendering them more susceptible
to PARPI. To validate this hypothesis, we selected MDA-MB-231
and HCC1937 cell lines as representative models with wild-type
and mutant BRCA1 genotypes, respectively.*® We stably overex-
pressed MYC (MYC®E) or vector control (Vec®F) in these cell lines
to mimic distinct genetic backgrounds (Figures 50 and S6G).
Immunofluorescence revealed an elevated level of gamma
H2A.X, a marker of double-strand breaks,*® within the BRCA1™-
MYCCE HCC1937 cell line (Figure 5P). Immunohistochemical stain-
ing for gamma H2A.X further confirmed increased staining intensity
in gBRCAT™!'-MYC®™ tumors (Figure 5Q). Additionally, we
observed that MYC overexpression induced DNA damage, as

(C-H) Comparisons of chromosomal instability (CIN) score (C), CX5 activity (D), homologous recombination deficiency (HRD) score (E), telomeric allelic imbalance
score (F), loss of heterozygosity score (G), and large-scale state transition score (H) between gBRCA1™-MYC®™ and gBRCA1™-MYC"! TNBCs. Each boxplot
presented the median values and 1.5 X interquartile ranges. p values were obtained from logistic regression.

() Gene set enrichment analysis showing downregulated pathways of DNA damage repair within the gBRCA1™*-MYC®™ tumors.

(J) Polar metabolomics correlation network based on 669 polar metabolites using Spearman correlation >0.4 and FDR < 0.05 cutoff. Correlation networks were
partitioned and color-coded by a graph-clustering algorithm, and the average quantification of different co-alteration statuses in the correlation networks was
presented. Color annotation corresponds to Figure 5K.

(K) Log, fold changes of the abundances of different categories of polar metabolites in co-altered TNBC tissues as compared with single-altered TNBC tissues.
Logs, fold change value of 0 (the dashed blue line) indicates the same level of polar metabolites abundance between tumor and normal tissues. Each boxplot
presented the median values and 1.5 x interquartile ranges.

(L) Representative images of PDOs with different co-alteration statuses. Scale bar: 100 pM.

(M) Viability of PDOs with different co-alteration statuses treated with olaparib. p values were obtained from Student’s t test. Data are presented as mean + SD. **,
p < 0.01; ns, not significant.

(N) Relative viability of TNBC mini-PDX models with olaparib treatment, as normalized to vehicle treatment. Data are presented as mean + SD. p values were
obtained from Student’s t test. ***, p < 0.001; ns, not significant.

(O) HCC1937 (BRCA1™" and MDA-MB-231 (BRCA1*Y cell lines with different genetic backgrounds by stably overexpressing MYC (MYCP5).

(P) Representative images (left) and quantification (right) of immunofluorescence staining of gamma H2A.X (phospho Ser139) (green) foci. Nuclei were stained
with DAPI (blue). Data are presented as mean + SD. Scale bar, 10 um. p values were obtained via Student’s t test. ***, p < 0.001.

(Q) Immunohistochemical staining of gamma H2A.X (phospho Ser139). Each boxplot presented the median values and 1.5 X interquartile ranges. Scale bar: 100 um.
p values were obtained via Student’s ¢ test. *, p < 0.05; ns, not significant.

(R) Western blot analysis of gamma H2A.X (phospho Ser139) in HCC1937 and MDA-MB-231 cell lines with or without MYC overexpression. See also Figure S6.
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evidenced by increased level of gamma H2A.X (phospho Ser139)
(Figure 5R).

Taken together, these findings suggest increased DNA dam-
age, providing a rationale for the enhanced sensitivity to PARPI.

Associations of TP53™'-MYB®"" with decreased
immune infiltration and immunotherapy resistance
Previous studies have highlighted the impact of co-occurring
oncogenic alterations on tumor microenvironment (TME) and
immunotherapy efficacy.'® Accordingly, we examined the associ-
ations between co-alterations and immunotherapy response.
Initial investigation identified the co-occurrence of TP53 mutation
and MYB amplification (Figure 6A). As previously stated,
compared to non-carriers in TNBC, TP53™“-MYB?™ carriers ex-
hibited a worse prognosis (Figure 6B), a lower likelihood of
achieving pCR in the neoadjuvant setting (Figure 6C), and a lower
ORR in the advanced setting (Figure 6D). Notably, advanced pa-
tients harboring co-occurring TP53™-MYB®™ also exhibited
poorer progression-free survival when treated with immuno-
therapy (Figure GE).

Given the divergent immunotherapy response across different
co-alteration statuses, we investigated the underlying biological
properties of TP53™'-MYB®™ tumors. Interestingly, we
observed an increased neoantigen burden within TP53™-MY-
B tumors compared to non-co-altered tumors (Figure 6F).
However, further analysis revealed a significantly higher inci-
dence of LOH of human leukocyte antigen (HLA-LOH) in
TP53™L-MYB®™ tumors (Figure 6G). Co-altered tumors further
exhibited downregulated pathways related to immune response
and antigen presentation (Figure 6H). Consistently, immunohis-
tochemistry confirmed a decreased human leukocyte antigen-I
expression in TP53™-MYB®™ tumors (Figure 6l). We also
observed increased metabolic dysregulation within the co-
altered tumors (Figure S7A). Metabolic pathway-based DA
analysis revealed global upregulation of lipid metabolism (Fig-
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ure S7B), with many metabolites showing a negative correlation
with tumor-infiltrating lymphocytes (Figure S7C), particularly
sphingolipids, which are recognized indicators of compromised
anti-tumor immunity.*° These findings collectively suggest an
immunosuppressive TME for TP53™“-MYB™ tumors.

To functionally test our hypothesis, we performed a PDO-T
cells co-culture experiment (Figure 6J). Notably, PDOs carrying
co-occurring TP53™-MYB?™ exhibited no significant viability
changes, whereas non-carriers showed decreased viability after
anti-PD-1 antibody treatment (Figure 6K). In addition, we em-
ployed PDTFs to evaluate the early immunological response of
human tumor tissue to ex vivo PD-1 blockade. After 48 h of incu-
bation with an anti-PD-1 antibody, we profiled the effect of PD-1
blockade on PDTFs with different co-altered statuses using T cell
activation markers as readouts (Figures 6L and S7D). Specif-
ically, non-co-altered tumors exhibited increased infiltration
and activation of CD3"CD8" T cells after PD-1 blockade, while
TP53™_MYB3™ tumors showed slight decreases (Figures 6M
and S7E). To validate the function of TP53™!-MYB®™ co-alter-
ation in vivo, we used the BALB/c-derived murine breast cancer
cell line 67NR, which is characterized by Trp53 deficiency.”"
Next, we stably overexpressed Trp53 (Trp53°F) or Myb (Myb°F)
in 67NR cell lines to mimic different genetic backgrounds
(Figures 6N and S7F). The in vivo isograft assay showed that
the Vec®E-Myb®E 67NR cell line, mimicking the Trp53™'-
Myb?™ genotype, had significantly larger tumor volume than
other groups after PD-1 blockade (Figure 60).

Taken together, these findings provide further support for the
association of the TP53™“'-MYB?™ co-alteration with decreased
immune infiltrations and compromised immunotherapy efficacy.

Co-alteration-informed precision treatment strategies
to improve patient outcomes

Since we have provided a comprehensive overview of the asso-
ciation of co-alterations with efficacy and biological properties,

Figure 6. Associations of TP53™!-MYB®™P with response to immune checkpoint blockade
(A) Oncoplot showing the co-occurring pattern between TP53 mutation and MYB amplification.

(B) Kaplan-Meier curves of overall survival in patients with TNBC harboring different statuses of TP53™!-MYB*™. Multivariate Cox proportional hazards model
was used to obtain hazard ratios and p values, adjusting for confounders of age, histology, tumor size, and lymph node status.

(C) Pathologic complete response rate stratified by the statuses of TP53™“-MYB?™ within TNBC patients treated with neoadjuvant immunotherapy. Multivariate
logistic regression was performed to obtain p values after adjusting for age, histology, tumor size, and lymph node status. R, responder; NR, non-responder.
(D) Objective response rate stratified by the statuses of TP53™!-MYB*™" within advanced TNBC patients treated with immunotherapy. p value was obtained from
logistic regression model. R, responder; NR, non-responder.

(E) Kaplan-Meier curves of progression-free survival by the status of TP53™!-MYB*™ within the advanced immunotherapy cohort. Cox proportional hazards
model was used to estimate the hazard ratio and the corresponding 95% confidence interval.

(F) Levels of neoantigen load grouped by different co-alteration statuses within TNBC. Each boxplot presented the median values and 1.5 X interquartile ranges.
p values were obtained from Kruskal-Wallis test.

(G) Prevalence of human leukocyte antigen loss of heterozygosity (HLA-LOH) across different co-alteration statuses within TNBC. The p value was obtained from
multivariate logistic regression model adjusted for age.

(H) Gene set enrichment analysis showing downregulation of immune-related pathways within the TP53™“-MYB®™ tumors.

() Immunohistochemical staining of HLA and H-score quantification. Each boxplot presented the median values and 1.5 x interquartile ranges. Scale bar:
100 um. p values are from Kruskal-Wallis test.

(J) Schematic diagram of the PDO-T cell co-culture.

(K) Viability of PDOs with different co-alteration statuses treated with immunotherapy when co-cultured with T cells. Each boxplot presented the median values and
1.5 X interquartile ranges. The p value was obtained from Student’s t test.

(L) Schematic diagram of the patient-derived tumor fragment platform.

(M) Quantification of CD3*CD8" T cells. Each boxplot presented the median values and 1.5 X interquartile ranges. p values were obtained from paired Student’s
t test.

(N) 67NR cell lines with different genetic backgrounds by overexpressing Trp53 (Trp53°F) and Myb (MybOE).

(O) Growth curves and tumor weights at the endpoint across tumors with different co-alteration statuses when treated with anti-PD-1. Data are presented as
mean + SD. p values were obtained from Student’s t test. ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, not significant. See also Figure S7.
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Figure 7. Clinical validation of the co-alteration-informed precision treatment strategies

(A) Schematic diagram of the clinical validation.

(B) Comparison of treatment response between matched and unmatched treatment strategies. R, responder; NR, non-responder.

(C) Summary of underlying biology and therapeutic impacts.

we then evaluated the overall benefit of co-alteration-informed
precision treatment in several clinical trial cohorts (Figure 7A).
For patients with specific co-alterations, those who received
matched therapies showed a significantly better response than
did those receiving unmatched treatments (Figure 7B). Further
analysis will be conducted when mature survival data become
available. These data further highlighted the importance of co-
alteration-informed precision treatment in improving patient
outcomes.

DISCUSSION

Ongoing appreciation of cancer genome and burgeoning
application of precision medicine prompted investigations
into the impact of co-occurring genomic alterations on both
biological properties and therapeutic efficacy. Here, we con-
structed a comprehensive network of co-occurrence and
mutual exclusivity leveraging large-scale multi-omics and
clinical sequencing cohorts. Furthermore, we provided an

Cancer Cell 42, 701-719, April 8, 2024 713




¢ CellPress

overview of the therapeutic implications of co-alterations in
neoadjuvant, adjuvant, and advanced settings. Additionally,
we cataloged the molecular basis of several clinically relevant
co-alterations and validated the findings through functional
validation. Our findings illuminate the potential of precision
treatment strategies informed by co-alterations to enhance
patient outcomes (Figure 7C).

While several studies have offered insights into pan-cancer
co-occurring and mutually exclusive patterns, these studies
did not perform functional validation or investigate the thera-
peutic implications. Although emerging investigations have
identified selected co-occurring events associated with treat-
ment responses in advanced settings,®® our work focused on
the impact of co-alterations on clinical outcomes across adju-
vant, neoadjuvant, or advanced settings. Multi-dimensional
functional validation was further performed to elucidate the
functional relationship between co-occurring genomic alter-
ations. Furthermore, our study might be better powered to
detect new predictive biomarkers due to a larger sample size
of single cancer type, especially in the neoadjuvant cohort.
The incorporation of detailed treatment data and comprehen-
sive multi-omics dimensions further enhances the depth and
scope of our investigation. These findings should be consid-
ered together with existing evidence when determining treat-
ment approaches. Additionally, the concept of co-alteration
exhibits notable distinctions and advantages compared to pre-
vious investigations. Tumors harboring co-alterations manifest
distinctive properties in downstream pathway changes and
metabolic reprogramming, suggesting a biological interplay
between co-altered driver alterations. Particularly noteworthy
is the clinical relevance of the co-alteration concept, present-
ing potential therapeutic implications. By considering co-alter-
ations, we aim to shape genome-informed treatment deci-
sions, extending beyond the conventional emphasis on
individual driver alterations. Overall, our study aims not only
to identify robust co-occurring or mutually exclusive events
with multifaceted datasets but also, more importantly, to un-
cover the underlying relationships between these events and
clinical outcomes.

To enhance the robustness, we have validated 68.8% of the
co-occurrence and mutual exclusivity events. For the missing
validation, we acknowledge that the validation differences
may be influenced by several factors. First, the FUSCC-
ClinSeq, MSK-IMPACT, GENIE-BRCA, and MSK-MetTropism
cohorts employed targeted sequencing panels. These panels
have inherent limitations, particularly in terms of the number of
genes included in the panels and the capability to detect
CNAs, thereby leading to failed validation. Additionally, the esti-
mation of co-occurring and mutually exclusive patterns be-
tween low-frequency genomic alterations inherently involves
randomness across different cohorts. Larger cohorts provide
a more robust statistical basis for detecting and validating these
events.'® Finally, differences in clinicopathological composi-
tions and variations in frequency of genomic alterations among
diverse cohorts may contribute to the validation discrepancies
observed.

We have identified several co-alterations that influence both
biology and treatment efficacy of breast cancer. For co-occur-
ring TP53™-AURKA®™, previous studies correlated AURKA
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expression negatively with P53 expression®® and associated
TP53 mutation and high AURKA expression with an aggressive
luminal A subtype.®® In addition, our study suggested centro-
some amplification as a potential mechanism for endocrine
resistance, reinforcing the reported link between AURKA and
centrosome amplification observed in P53 deficiency.***' For
co-occurring  gBRCA1™-MYC®™, MYC’s role in PARPI
response remains controversial. Multiple studies have sug-
gested MYC enhances PARPI sensitivity by inducing DNA dam-
age through alternative non-homologous end joining®>>° or im-
pairing homologous recombination.®” Papp et al. correlated
MYC amplification with strong PARPI sensitivity in ovarian can-
cer.”® Conversely, Carey et al. reported that MYC knockout re-
sensitized PARPi in TNBC."° However, a clinical trial combining
dinaciclib (MYC downregulator) and PARPi showed limited effi-
cacy.®® Our study emphasized MYC amplification/overexpres-
sion over knockout. MYC’s role in DNA damage response varies
with normal levels promoting repair®’ and excessive expression
increasing damage.®>°%% Carey et al. suggested MYC pro-
motes RAD51 expression, enhancing DNA damage repair, but
efficient repair mediated by RAD57 depends on BRCA1.5%5
Consequently, in the context of germline BRCA1 mutation, co-
occurring MYC ampilification contributes to elevated DNA dam-
age and decreased repair capacity, thereby enhancing PARPI
response. For co-occurring TP53™-MYB™, our findings re-
vealed an association with immunotherapy resistance. Despite
a high neoantigen load, these tumors exhibit impaired antigen
presentation attributed to HLA-LOH. While TP53 mutation has
been linked to HLA-LOH,®® TP53™-MYB®™ tumors showed a
higher prevalence of HLA-LOH compared to TP53™-MYB"" tu-
mors, suggesting a potential functional interaction between
TP53 mutation and MYB ampilification. This finding underscores
the complex interplay between genetic alterations and shaping
the immune landscape of these tumors.

Our study has several limitations warranting consideration in
future research. First, the three co-alterations emphasized in
our study exhibit a relatively low prevalence, limiting the broad
clinical impact of our findings. Nonetheless, rather than
concentrating on specific co-occurring events, our study high-
lights that genome-informed treatment decisions should
extend beyond individual driver alterations. We will also
explore additional genetic interactions that cater to a broader
spectrum of breast cancer patients and offer more ground-
breaking targets. Second, a larger-scale multi-omics cohort
is essential to enhance the statistical power and generaliz-
ability of co-occurrence and mutual exclusivity estimation,
particularly between germline and somatic alterations. Third,
inherent biases exist due to the non-randomized nature of
treatment cohorts, necessitating validation of co-alteration-
treatment interactions in prospective settings. Finally, the cur-
rent study lacked in-depth mechanistic investigation. Ongoing
experiments aimed to elucidate the functional implications of
identified co-alterations.

Overall, we leveraged a large-scale multi-omics cohort and a
real-world clinical sequencing cohort to investigate co-occur-
rence and mutual exclusivity in breast cancer, unveiling their
therapeutic implications. These insights may complement
ongoing efforts in precision oncology to extend the clinical
benefit of genomics-guided precision treatment. With growing
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accessibility of tumor genomic sequencing, precision treatment
decisions should be based on and beyond single driver
alterations.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibody

WB: anti-Vinculin
WB: anti-p53 (1C12)
WB: anti-Aurora A
WB: anti-c-MYC
WB: anti-c-MYB

WB (also for IHC and IF): anti-gamma
H2A.X (phospho S139)

WB: Goat Anti-Rabbit IgG (H + L) HRP
WB: Goat Anti-Mouse IgG (H + L) HRP
IF: anti-Centrin 3

IF: anti-Alpha Tubulin

Cell Signaling Technology
Cell Signaling Technology
Abcam

Proteintech

Proteintech

Abcam

Kigene
Kigene
Abcam
Proteintech

Cat# 13901; RRID: AB_2728768

Cat# 2524; RRID: AB_331743

Cat# ab13824; RRID: AB_300667
Cat# 10828-1-AP; RRID: AB_2148585
Cat# 17800-1-AP; RRID: AB_2148029
Cat# ab22551; RRID: AB_447150

Cat# KWB045

Cat# KI2663

Cat# ab228690

Cat# 66031-1-Ig; RRID: AB_11042766

IHC: anti-HLA Class 1 ABC Abcam Cat# ab70328; RRID: AB_1269092
IF: Goat Anti-Rabbit IgG (H + L) TRITC-conjugated Affinity Cat# S0015; RRID: AB_2844803
IF: Alexa Fluor ®647-conjugated AffiniPure Jackson Cat# 115-605-003; RRID: AB_2338902
Goat Anti-Mouse I9gG (H + L) ImmunoResearch

Ultra-LEAF™ Purified anti-human CD3 Antibody BioLegend Cat# 300438; RRID: AB_2749892
(clone UCHT1)

Ultra-LEAF™ Purified anti-human CD28 Antibody BioLegend Cat# 302934; RRID: AB_2616667
(clone CD28.2)

FC: Zombie-NIR BioLegend Cat# 423105

FC: AF700 anti-human CD45 (clone: 2D1) BioLegend Cat# 368513; RRID: AB_2566373
FC: PE594 anti-human CD3 Antibody (clone: UCHT1) BioLegend Cat# 300449; RRID: AB_2563617
FC: PC7 anti-human CD8a (RPA-T8) BioLegend Cati# 301012; RRID: AB_314130
FC: FITC anti-ICOS (clone: C398.4A) BioLegend Cat# 313505; RRID: AB_416329
FC: PC5.5 anti-human OX40 (clone: Ber-ACT35) BioLegend Cat# 350009; RRID: AB_10720986
FC: APC anti-human CD25 (clone: M-A251) BioLegend Cat# 356109; RRID: AB_2561976
FC: PE anti-human CD137 (clone: 4B4-1) BioLegend Cat# 309803; RRID: AB_314782
Biological samples

Tumor and normal tissue samples This study FUSCC-BRCA

(breast cancer patients) FUSCC-ClinSeq

Patient-derived organoids This study FUSCCPDO

Patient-derived tumor fragments This study FUSCCPDTF

Mini-PDX This study FUSCC-miniPDX

Chemicals, peptides, and recombinant proteins

polybrene Solarbio Cat# H8761

puromycin Invivogen Cat# 58-58-2

Blasticidin BasalMedia Cat# S180J0

Antibody diluent Kigene Cat# KWB027

TRIzol Reagent Invitrogen Cat# 15596018

PEI MW25000

Opti-MEM Reduced Serum Medium,
GlutaMAX Supplement

DNase |
Collagenase D
Collagenase |

el Cancer Cell 42, 701-719.e1-e12, April 8, 2024

Polysciences
Polysciences

Roche
Roche
Sigma Aldrich

Cat# 23966
Cat# 51985034

Cat# 10104159001
Cat# 11088866001
Cat# C0130

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
TrypLE Express Enzyme Invitrogen Cat# 12605036
red blood cell lysis buffer eBioscience Cat# 00-4300-54

Leukocyte Activation Cocktail

BD Biosciences

Cat# 550583; RRID: AB_2868893

Cell Staining Buffer BioLegend Cat# 420201

Fixation Buffer BioLegend Cat# 420801

Intracellular Staining Permeabilization Wash Buffer BioLegend Cat# 421002

InVivoMAb anti-mouse PD-1 (clone: RMP1-14) Bio X Cell Cat# BE0146; RRID: AB_10949053
InVivoMADb rat IgG2a isotype control (clone: 2A3) Bio X Cell Cat# BE0089; RRID: AB_1107769
InVivoPure pH 7.0 Dilution Buffer Bio X Cell Cat# |P0070

Tamoxifen Selleck Cat# S1238

4-Hydroxytamoxifen (4OH-TAM) Selleck Cat# S7827

Alisertib Selleck Cat# S1133

PF-06873600 Selleck Cat# S8816

Olaparib Selleck Cat# S1060

Nivolumab Selleck Cat# A2002

Anti-B-Gal-higG4 InvivoGen Cat# S228P

17B-ESTRADIOL innovrsrch Cat# SE-121-0.36mg

Matrigel Basement Membrane Matrix Corning Cat# 356234

Fc Receptor Blocking Solution Biolegend Cat# 422301

Critical commercial assays

CellTiter-Glo 3D Cell viability assay Promega Cat# G9683

Cell Counting Kit-8 Yeasen Cat# 40203ES92

BCA Protein Assay Kit Solarbio Cat# PC0020

Antifade Mounting Medium with DAPI Beyotime Cat# P0131

CellTiter Glo Luminescent Cell Viability Assay kit Promega Cat# G7571

GTVisionTM llI Detection System/Mo&Rb Gene Tech Cat# GK500710

(Including DAB)

Deposited data

FUSCC-BRCA This study NODE: OEP003358, OEP003049, and OEP000155
FUSCC-ClinSeq This study NODE: OEP001027, OEP003469,

TCGA-BRCA

AACR GENIE breast cancer cohort
MSK-IMPACT

MSK-MetTropism

PCAWG

METABRIC

CPTAC breast cancer cohort
Cancer Dependency Map (DepMap)

Cancer Genome
Atlas Network
AACR project
Razavi et al.®’
Nguyen et al.®®
PCAWG

Curtis et al.”®

Krug et al.”®

The Broad Institute

and OEP004654

https://www.cbioportal.org;

Cancer Genome Atlas Network®’
https://genie.cbioportal.org; Pugh et al.®®
https://www.cbioportal.org; Razavi et al.”
https://www.cbioportal.org; Nguyenet al.®®
https://www.cbioportal.org; ICGC/TCGA PCAWG®®
https://www.cbioportal.org; Curtis et al.?®
https://www.cbioportal.org; Krug et al.”®

https://depmap.org/portal; Tsherniak et al.”’

Experimental models: Cell lines

Human embryonic kidney cell line HEK293T ATCC Cat# CRL-3216; RRID: CVCL_0063
Human breast cancer cell line HCC1937 ATCC Cat# CRL-2336; RRID: CVCL_0290
Human breast cancer cell line MDA-MB-231 ATCC Cat# HTB-26; RRID: CVCL_0062
Human breast cancer cell line MCF7 ATCC Cat# HTB-22; RRID: CVCL_0031
Mouse breast cancer cell line 67NR Y. Kang Lab N/A

Experimental models: Organisms/strains

Female BALB/c mice (5 to 6-week-old) Chengxi Biotech, Shanghai N/A

Female BALB/C-NU mice (5 to 6-week-old) LIDE Biotech, Shanghai N/A

Female NSG mice (5 to 6-week-old) Chengxi Biotech, Shanghai N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER
Oligonucleotides

sgRNA targeting sequence: TP53: This study N/A
GCATGGGCGGCATGAACCGG

Recombinant DNA

pCDH-EF1-FHC Addgene Cat# 64874
pMSCV-Blasticidin Addgene Cat# 75085
psPAX2 Addgene Cat# 12260
pCMV-VSV-G Addgene Cati# 8454
lentiCRISPR v2 Addgene Cat# 52961
Ubi-MCS-3FLAG-SV40-EGFP-IRES-puro GENECHEM Co. Ltd Cat# GV358

Software and algorithms

dNdScv
MutSigCV
ANNOVAR

annotateMaf
oncokb-annotator

CharGer

InterVar

PathoMan

SELECT

SigProfiler tools
CINSignatureQuantification

EstimateClonality

Absolute
ASCAT
gprofiler2
GSEA
EnrichmentMap

Gephi0.9.3
survival
ComplexHeatmap

Flowjo
GraphPad Prism

Biorender

Martincorena et al.”®

Lawrence et al.”

Wang et al., 20107*

The R Foundation
Chakravarty et al.”®
Huang et al.”®
Lietal.”

Ravichandran et al
| 12,13

|78

Mina et al
Alexandrov et al.”®
Drews et al.®°

McGranahan et al.®’

Carter et al.®”

Van Loo et al.®®
The R Foundation
The Broad Institute
Cytoscape APP

Gephi
The R Foundation
Bioconductor

FlowdJo, LLC
GraphPad

N/A

https://github.com/im3sanger/dndscv
Lawrence et al.”

https://annovar.openbioinformatics.
org/en/latest

https://www.r-project.org
https://github.com/oncokb/oncokb-annotator
https://github.com/ding-lab/CharGer
https://github.com/WGLab/InterVar
https://pathoman.mskcc.org
http://ciriellolab.org/select/select.html
https://github.com/AlexandrovLab

https://github.com/markowetzlab/
CINSignatureQuantification

https://bitbucket.org/nmcgranahan/
pancancerclonality/downloads

https://github.com/ShixiangWang/DoAbsolute
https://github.com/VanLoo-lab/ascat
https://www.r-project.org
https://www.gsea-msigdb.org

https://apps.cytoscape.org/
apps/enrichmentmap

https://gephi.org
https://www.r-project.org

https://bioconductor.org/packages/
release/bioc/html/ComplexHeatmap

https://www.flowjo.com

https://www.graphpad.com/
scientificsoftware/prism

https://biorender.com

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yi-Zhou

Jiang (yizhoujiang@fudan.edu.cn).

Materials availability

This study did not generate new unique reagents.
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Data and code availability

Raw sequencing data for all datatypes have been deposited in The National Omics Data Encyclopedia (NODE) (http://www.biosino.org/
node). The processed multi-omics data and targeted sequencing data have been submitted to NODE by pasting the accession
(OEP003358, OEP003049, OEP000155, OEP001027, OEP003469, and OEP004654) into the text search box or through the URL:
http://www.biosino.org/node/project/detai/OEP003358, http://www.biosino.org/node/project/detai/OEP003049, http://www.biosino.
org/node/project/detai/OEP000155, http://www.biosino.org/node/project/detail/OEP001027, http://www.biosino.org/node/project/
detail/OEP003469, and http://www.biosino.org/node/project/detail/OEP004654. Targeted sequencing data can also be accessed by
visiting the Fudan Data Portal (https://data.3steps.cn/cdataportal/study/clinicalData?id=FUSCC_BRCA_panel_4000). Specific code
will be made available upon request to Y.-Z.J.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient samples and study cohorts
Our study incorporated data from several cohorts to discover co-occurrence and mutual exclusivity of genomic alterations and inves-
tigate their role in clinical outcomes.

Cohort 1 (FUSCC-BRCA) is a multiomics cohort comprising a total of 873 Chinese breast cancer patients treated at the Department of
Breast Surgery at Fudan University Shanghai Cancer Center (FUSCC) between September 2009 and October 2015. Patients within this
cohort were included based on the following criteria: 1) females diagnosed with unilateral invasive breast cancer; 2) pathologic exam-
ination of tumor specimens by the Department of Pathology at FUSCC, including independently confirmed status of ER, PR, and HER2
by two experienced pathologists based on immunohistochemistry and in situ hybridization; a cutoff of > 1% positively stained cells was
adopted to indicate ER/PR positivity according to the ASCO/CAP guidelines; 3) availability of adequate frozen tissue for further exam-
ination. Patients with carcinomas in situ or inflammatory breast cancer and patients with de novo stage IV breast cancer were excluded.

The last telephone follow-up for patients within this cohort was performed on June 30, 2021, and the median follow-up was
83.2 months (interquartile range, 67.7-92.2 months). The clinical outcomes in our study included distant metastasis-free survival
(DMFS) and overall survival (OS). DMFS was defined as the interval from the date of surgery to the first detection of distant metastasis
or death from any cause. OS was defined as the interval from the date of surgery to death from any cause. Patients without any events
were censored at the time of last follow-up.

Cohort 2 (FUSCC-ClinSeq) is a targeted sequencing cohort. A total of 4,405 consecutive Chinese breast cancer patients who were
treated at the Department of Breast Surgery at FUSCC between April 2018 and June 2021 were prospectively included based on the
similar inclusion criteria, including the females with unilateral invasive breast cancer whose tumor specimens were subjected to path-
ologic examination in the Department of Pathology at FUSCC. In addition, the availability of adequate fresh tissue for further exam-
ination was required.

We have also initiated several umbrella trials to practice genomics-guided precision treatment in HR + HER2-or triple-negative
breast cancer patients, including the FUSCC ICI trial (NCT04613674), FUTURE trial (NCT03805399), the FUTURE-C-PLUS trial
(NCT04129996), the FUTURE-SUPER trial (NCT04395989), and the MULAN trial (NCT04355858). Patients’ baseline characteristics
and treatment outcomes were recorded in a detailed and comprehensive way. These treatment cohorts were also included to eval-
uate the impact of co-alterations on the treatment efficacy of PARPi or immunotherapies.

Clinicopathological characteristics, the extent of the disease and details of treatment were recorded. All tissue and peripheral
blood samples included in this study were obtained after the approval of our research by the FUSCC Ethics Committee, and each
patient provided written informed consent.

External cohorts

For validation and further investigation of the biological characteristics of the co-occurrence and mutual exclusivity of genetic events,
we collected molecular profiling data of breast cancer and functional readouts of genetic and drug perturbation screening from pub-
licly available repositories (cbioportal.org; genie.cbioportal.org; depmap.org), including The Cancer Genome Atlas (TCGA), MSK-
IMPACT, METABRIC, AACR project GENIE Cohort v12.0-public, Clinical Proteomic Tumor Analysis Consortium (CPTAC), MSK-
MetTropism, PCAWG, Cancer Cell Line Encyclopedia (CCLE), and The Cancer Interaction Map (DepMap).

Data generation for the FUSCC-BRCA cohort

Sample processing for genomic DNA and total RNA extraction

For quality control (QC), we macro-dissected frozen tumors and tumor cell percentage was confirmed >50%. DNA from frozen sam-
ples and blood cells was purified using TGuide M24 (Tiangen, Beijing). Genomic DNA purity and quantity were assessed with
NanoDrop 2000 (Thermo Scientific, Wilmington) (A260/A280 ratio 1.6-1.9). Total RNA from RNAlater-stored tissues was purified us-
ing miRNeasy Mini Kit (Qiagen #217004). RNA integrity was evaluated with Agilent 4200 Bioanalyzer and concentrations determined
by NanoDrop ND-8000 (Thermo Fisher Scientific Inc.).

Sample preparation and data generation for RNA sequencing

Libraries were constructed using a Ribo-off rRNA Depletion Kit (Vazyme #N406) for ribosomal RNA depletion, and a VAHTS Universal
V8 RNA-seq Library Prep Kit for lllumina (Vazyme #NR605, Vazyme Biotech Co., Ltd. Nanjing) for RNA library construction. This
involved reverse-transcribing fragmented RNAs into cDNA, adding 3'-terminal poly(A) modification, and attaching adapters for
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PCR library amplification. For library QC, Qubit 4.0 (Thermo Fisher Scientific Inc.) and Agilent 2200 Bioanalyzer (Agilent Inc.) were
utilized to assess concentration and fragment size distribution, respectively. Sequencing was carried out on lllumina NovaSeq plat-
forms with paired-end reads of 150 bp.

Raw lllumina data underwent demultiplexing, conversion to FASTQ files, and quantification of adapter and low-quality sequences.
HISAT2 mapped sample reads to the hg38 human genome. Expression values in fragments per kilobase of transcript per million map-
ped reads (FPKM) were obtained through StringTie and Ballgown and genes with FPKM of 0 in over 30% of samples were excluded.
Genomic data analysis of whole-exome sequencing data
A dataset of 873 tumor/normal pairs was analyzed. Exome-sequenced reads were aligned using BWA-mem, and BAM files were
preprocessed with duplicate marking and base quality score recalibration via Sentieon Genomics tools v202010.02.%* Quality
assessment involved NGSCheckMate,®® FastQ Screen,®® FastQC,?” and Qualimap.®®
Somatic variant calling
VarScan2 v2.4.2%° (-min-coverage 3 —-min-coverage-normal 3 -min-coverage-tumor 3 -min-var-freq 0.08 —p-value 0.10 —somatic-p-
value 0.05 —strand-filter 1), TNseq,®* and TNscope®® (Sentieon driver -t -r —algo TNscope —dbsnp —pon) were employed for somatic
mutation identification. For raw VarScan2 results, processSomatic and somaticFilter (-min-coverage 10 —-min-reads2 2 2 —min-
strands2 1 —-min-avg-qual 20 —p-value 0.1) were used to extract high-confidence somatic mutations and eliminate clusters of false
positives and single-nucleotide variants (SNV) calls near indels. TNseq identified and filtered variants using TNhaplotyper2 (-germli-
ne_vcf —pon —algo OrientationBias and —algo ContaminationModel), and TNfilter (-contamination —tumor_segments —orientation_
priors). Both TNseq and TNscope utilized a panel of normal (PoN) samples based on 699 normal blood samples, creating two
VCF files for identified mutations. Additionally, the location of the population germline resource containing the population allele fre-
quencies obtained from gnomAD®" were used to filter the raw TNseq results.

To obtain the final variant calls, we first removed spurious variant calls due to sequencing artifacts and employed consensus mu-
tations from at least two out of three callers for somatic mutation identification. Additional bam-readcount filtering (https://github.
com/genome/bam-readcount) was applied, considering: 1) variant allele frequency (VAF) > 5%; 2) sequencing depth in the region
>8; and 3) sequence reads supporting the variant call >4.

Germline variant calling

Pindel®® (-c all -x 4 -L -B 0 -M 3 -J hg38_ucsc_centromere.bed) and Sentieon DNAseq Haplotyper®® with default parameters were
used for germline mutation identification. Only high-confidence variants meeting the following criteria were retained: 1) for SNVs,
a minimum of 20x coverage, sequencing depth > 5 in the region for the alternative allele, and 20% VAF; 2) for indels, identified
by both Haplotyper and Pindel, or Pindel-unique calls with high confidence (at least 30x coverage and 20% VAF). All somatic and
germline variant calls were then annotated using both ANNOVAR’“ and the Ensembl variant effect predictor (VEP).*®

Sample preparation and data generation for copy number alteration (CNA)

The OncoScan CNV Assay Kit (Affymetrix, Santa Clara, CA, USA) was utilized for genome-wide copy number analysis as per the man-
ufacturer’s instructions. Each tumor sample, containing 80 ng of DNA, underwent processing. Molecular inversion probes (MIPs)
were mixed with sample DNA and annealed at 58°C overnight. The annealed DNA was divided into two equal parts and incubated
with AT or GC gap-fill master mixes for ligation. Subsequently, exonuclease treatment removed unincorporated, noncircularized
MIPs and remaining genomic templates. Circularized MIPs were linearized with a cleavage enzyme, followed by two successive
PCR amplifications. Amplified products were digested with Haelll and Exo enzymes, and small fragments containing specific sin-
gle-nucleotide polymorphism (SNP) genotypes were hybridized onto arrays.

Arrays underwent washing and staining using a GeneChip Fluidics Station 450 (Affymetrix, Santa Clara), followed by scanning with
a GeneChip Scanner 3000 7G (Affymetrix, Santa Clara). Cluster fluorescence intensity was measured to generate a DAT file. Cluster
intensity values were automatically calculated using a built-in algorithm from DAT files via GeneChip Command Console software
(Affymetrix, Santa Clara), generating a CEL file.

Analysis of SNP array data

Affymetrix OncoScan CNV SNP assays were analyzed with Chromosome Analysis Suite (ChAS) v4.1 software (Thermo Fisher Sci-
entific). A copy number reference model was built using DNA from 23 white blood cell samples and positive controls from the
OncoScan CNV Assay Kit. ChAS output was processed with ASCAT (v2.4.3)% for segmented copy number calls, tumor ploidy,
and purity estimates. ASCAT segments were used for log2 ratio calculation by dividing by the total copy number. GISTIC2.0
(v2.0.22)°* analyzed gene-level CNV recurrence with specific parameters (-ta 0.2 -td 0.2 -genegistic 1 -smallmem 1 -broad 1
-conf 0.95 -rx 0 -brlen 0.7 -cap 3.5 —armpeel 1 -js 100). Moreover, a group of adjacent normal tissues from 23 patients was used
to filter the recurrent germline/potential false-positive calls. Based on the segment output, the probes that suggested gain or loss
in at least five patients were used with the help of Integrative Genomics Viewer to constitute a CNV file for removing recurrent germ-
line/potential false-positive calls in GISTIC2.0.

MS sample processing and data collection for proteomics

Proteome analysis

Proteins were extracted from 1 to 2 mg fresh frozen tissues using 30 plL lysis buffer (6 M urea, 2 M thiourea, 100 mM triethylammonium
bicarbonate) and digested with Lys-C and trypsin (Hualishi, Beijing) assisted by pressure-cycling technology (PCT).*>°® TMTpro
16plex label reagents labeled the peptides, with a common pooled sample as a reference control. TMT-labeled samples were
cleaned with a C18 column and fractionated using a Dionex UltiMate3000 HPLC system (Thermo Fisher Scientific, San Jose,
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USA). Peptides were consolidated into 30 fractions. Redissolved peptides were analyzed by LC-MS/MS using a DIONEX UltiMate
3000 RSLCnano System coupled with an Orbitrap Exploris 480 mass spectrometer, equipped with a FAIMS Pro in data-dependent
acquisition (DDA) mode. LC gradient analysis lasted 60 min, and other LC-MS parameters followed a previous publication.
Database search

The mass spectrometric (MS) data were analyzed by Proteome Discoverer (Version 2.4.1.15, Thermo Fisher) using the human protein
data from UniProt (version 15/07/2020, 20368). Normalization was performed against the total peptide amount. Detailed search pa-
rameters were referenced in a prior publication.”’

Normalization and quality control of proteome data

The primary proteome data matrix underwent log, transformation, column-median normalization, and removal of batch effects using
the R package limma.“® Proteins absent in over 30% of samples were excluded. Further quality evaluation methods included corre-
lation between protein and mRNA using Spearman tests and PCA analysis comparing tumor and para-tumor samples. Samples of
poor quality were excluded.

MS sample processing and data collection for metabolomics

Polar metabolomics detection

Sample quenching and extraction. Twenty-five milligrams of the sample were weighed into an EP tube, and 500 pL of extraction
solution (methanol:acetonitrile:water = 2:2:1) was added. After homogenization (35 Hz for 4 min) and sonication (5 min in an ice-water
bath), the cycle was repeated three times. The samples were then incubated for 1 h at —40°C and centrifuged at 12000 rpm for 15 min
at 4°C.% The QC sample was prepared by combining equal aliquots of the supernatants from all samples.

Chromatography separation. LC-MS/MS analyses utilized a UHPLC system (Vanquish, Thermo Fisher Scientific) with a UPLC BEH
Amide column (2.1 mm x 100 mm, 1.7 pm), connected to a Q Exactive HFX mass spectrometer (Orbitrap MS, Thermo). The mobile
phase included 25 mmol/L ammonium acetate and 25 mmol/L ammonia hydroxide in water (pH = 9.75) (A) and acetonitrile (B). The
autosampler was set at 4°C, and the injection volume was 2 pL.

Mass spectrometry. A QE HFX mass spectrometer, known for its MS/MS spectra acquisition in information-dependent acquisition
(IDA) mode, was employed with control by Xcalibur software (Thermo). In IDA mode, the software continually assesses the full-scan
MS spectrum. ESI source conditions were set as follows: sheath gas flow rate 30 Arb, Aux gas flow rate 25 Arb, capillary temperature
350°C, full MS resolution 60,000, MS/MS resolution 7,500, collision energy 10/30/60 in NCE mode, and spray voltage 3.6 kV (positive)
or —3.2 kV (negative).

Data quality control, processing, metabolite identification and data analysis. MS raw data were converted to mzXML using
ProteoWizard software (version 3.0.19282) and processed by the XCMS R package (v3.2) for metabolomics, involving peak identi-
fication, alignment, extraction, retention time correction, and integration. The BiotreeDB database was utilized for polar metabolites.

Internal standards (IS) and QC samples assessed instrument variability. IS-induced variability was calculated by median relative
standard deviation (RSD) for added IS in each sample. For QC samples, an equal volume (10 plL) of each sample was mixed and
treated independently throughout the detection process, injecting every eight samples. QC distributions in PCA were analyzed to
assess instrument and process variability.

To ensure metabolomics data reproducibility, peaks with RSD over 30% in QC samples were filtered out. Remaining peaks were
annotated using the R package CAMERA' % based on retention time and mass-to-charge ratio (m/z) indices. The resulting data ma-
trix included retention time, m/z, and peak intensities. After removing peaks with intensity = 0 in over 50% of samples, peak areas
were normalized by isotopically labeled ISs for polar metabolomics.'®! To address intra- and interbatch variations, each metabolite
peak in subject samples underwent normalization using the LOESS method based on QC samples.'®" A LOESS regression model,
built on intensity drift in QC samples, predicted and corrected metabolite intensities in subject samples.®"

In summary, 669 MS/MS peaks were identified for polar metabolites. Since MS/MS peaks offered clear metabolite identification
and greater reliability, our research focused on these peaks.

Lipidomic detection

Sample quenching and extraction. Twenty milligrams of the sample were weighed into an EP tube, followed by sequential addition of
200 pL water and 480 pL extract solution (MTBE: MeOH = 5: 1). After 30 s of vortexing, samples were homogenized at 35 Hz for 4 min and
sonicated for 5 min in an ice-water bath. This cycle was repeated three times. Samples were then incubated at —40°C for 1 h and centri-
fuged at 3,000 rpm (RCF =900 (xg), R =8.6 cm) for 15 min at 4°C. Three hundred microliters of supernatant was transferred to a fresh tube,
and a QC sample was prepared by mixing equal aliquots of all supernatants, dried in a vacuum concentrator at 37°C. Dried samples were
reconstituted in 150 pL of 50% methanol in dichloromethane by sonication for 10 min in an ice-water bath. After centrifugation at
13,000 rpm (RCF = 16200 (xg), R=8.6 cm) for 15 min at 4°C, 120 uL of supernatant was transferred to a fresh glass vial for LC/MS analysis.
Chromatography separation. For lipidomics data collection, UHPLC system (1290, Agilent Technologies) equipped with a Kinetex
C18 column (2.1 * 100 mm, 1.7 um, Phenomen) was used. Mobile phase A comprised 40% water, 60% acetonitrile, and 10 mmol/L
ammonium formate. Mobile phase B comprised 10% acetonitrile and 90% isopropanol, with 50 mL of 10 mmol/L ammonium formate
added per 1000 mL of mixed solvent. The elution gradient was as follows: 0~12.0 min, 40%-100% B; 12.0-13.5 min, 100% B; 13.5-
18.7 min, 100%-40% B; 13.7-18.0 min, 40% B. The column temperature was 55°C. The autosampler temperature was 4°C, and the
injection volume was 3 pL (pos) or 3 uL (neg).

Mass spectrometry. Utilizing a QE mass spectrometer in DDA mode controlled by Xcalibur 4.0.27 software (Thermo), we continu-
ously evaluated full-scan MS spectra. ESI source conditions included a sheath gas flow rate of 30 Arb, Aux gas flow rate of 10 Arb,
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capillary temperature of 320°C (positive) and 300°C (negative), full MS resolution of 70,000, MS/MS resolution of 17,500, collision
energy of 15/30/45 in NCE mode, and spray voltage of 5 kV (positive) or —4.5 kV (negative).
Data processing, metabolite identification and data analysis. MS raw data, converted to mzXML format via ProteoWizard
(v3.0.19282) and processed by LipidAnalyzer, underwent peak identification, alignment, extraction, retention time correction,
and integration. LipidBlast database facilitated lipid annotation. QC for lipidomics followed procedures akin to polar
metabolomics.

Insummary, 1,312 MS/MS peaks identified for polar metabolites guided our research due to their clear identification and enhanced
reliability.

Data generation for FUSCC-ClinSeq cohort

Prospective sequencing and data generation

Tumor specimens were sent to the Chinese National Human Genome Center at Shanghai (CHGC) for deep-coverage sequencing.
Genomic sequencing, utilizing TGuide M24 (Tiangen, Beijing), was conducted on fresh frozen tumor DNA and normal DNA from pe-
ripheral blood mononuclear cells. DNA purity and quantity were assessed with NanoDrop 2000 (Thermo Scientific, Wilmington)
(A260/A280 ratio 1.6-1.9).

Tumor samples were sequenced using the FUSCC-BC panel (484-gene version 1 and 539-gene version 2), achieving mean depths
of coverage at 1000x for tissue and 400x for blood. The panel targets mutations, small insertions/deletions, and copy number al-
terations. In-house RNA baits, which captured all protein-coding exons of the target genes, were produced from an oligo pool syn-
thesized by Synbio Technologies (Suzhou). The oligo pool converted into double-stranded DNA with integrated T7 promoter sites,
transcribed into biotinylated RNA, which was then purified, quantified, and used for target enrichment.

Tumor and matched normal blood samples were concurrently sequenced. Each DNA sample (> 10 ng) obtained after SYBR Green
quantification underwent fragmentation using a Covaris M220, followed by terminal repair, A-tailing, and adapter ligation with a KAPA
HyperPlus kit (Kapa Biosystems) as per the manufacturer’s protocol. Subsequently, prepped DNA (750 ng in 3.4 plL) was captured by
RNA baits, and the resulting library was purified, amplified with index primers, and quantified using a Multi-Mode Reader (BioTek).
Pooled libraries were sequenced on an lllumina HiSeq X TEN platform (lllumina Inc., San Diego). Data collection employed Illlumina
Real-Time Analysis (RTA), and assembly into fastq files was performed using lllumina Bcl2Fastg2. An in-house bioinformatics pipe-
line, adhering to the general variant calling procedure, was employed for variant calling and coverage analysis of each capture region.
High-quality reads were mapped to the hg19 version of the human reference genome (GRCh37) using the BWA aligner with the BWA-
MEM algorithm and default parameters. The Genome Analysis Toolkit (GATK) was applied for local realignment of BAM files at in-
tervals with indel mismatches and recalibration of base quality scores.

Somatic variant calling

GATK (4.0.1.2.0) Mutect2'%? was used to identify somatic mutations. The VCF files were annotated using ANNOVAR. The variants
and annotation results were transferred into Excel spreadsheets. A panel of normal (PoN) samples was used to screen out expected
germline variations and artifacts for improving specificity. Each alteration identified by the pipeline was manually reviewed to confirm
that no false-positive variants were reported. SAMtools (V1.10) and GATK were used to acquire the sequencing quality statistics. The
FACETS algorithm'® was used to detect gene-level amplification and deletion.

GATK (4.0.1.2.0) Mutect2'°? identified somatic mutations, and ANNOVAR annotated the VCF files. A panel of normal (PoN) sam-
ples was used to screen out expected germline variations and artifacts. Manual review ensured no false-positive variants.
Sequencing quality statistics were obtained using SAMtools (V1.10) and GATK. The FACETS algorithm' % detected gene-level ampli-
fication and deletion.

Germline variant calling

GATK (4.0.1.2.0) HaplotypeCaller'®* identified germline SNVs and germline indels, retaining high-confidence variants based on
criteria: (1) protein-altering or splice site variants; (2) minimum 20x coverage, allelic depth (AD) > 10 for the alternative allele, and
VAF > 30%.

List of cancer driver genes
We have assembled a list of cancer driver genes based on four sources: 1) the cancer gene list curated by OncoKB (oncokb.org)’>; 2)
genes recorded as oncogenes or tumor suppressor genes (TSGs) by the Cancer Gene Census'®; 3) previously published and func-
tionally validated oncogenic driver genes reported by Bailey et al.’°®; 4) the compendium of mutational cancer driver genes from In-
tegrated OncoGenomics (intogen.org).

We also determined the significantly mutated genes (SMG) in the FUSCC-BRCA cohort by using the dNdScv’? and MutSigCV.”®
Genes with global g < 0.05 by these two methods were retained and intersected. We then took the union set of the cancer driver
genes and the SMGs as the cancer genes in the FUSCC-BRCA cohort.

Curation of functional variants

We classified the mutations in cancer genes as functional or neutral based on several criteria. For TSGs, truncating variants, namely
frameshift insertions/deletions, nonsense mutations, and essential splicing mutations, were considered putative functional. For both on-
cogenes and TSGs, hotspot mutations in the Cancer Hotspots database and oncogenic/likely oncogenic mutations in the OncoKB data-
base were retained. Hotspot mutations were annotated using the annotateMaf R package (github.com/taylor-lab/annotateMaf), and
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oncogenic mutations were annotated using oncokb-annotator (github.com/oncokb/oncokb-annotator). In addition, functional variants
ofthein silico prediction based on dbNSFP database version 3.5 were also included. Finally, the list was manually reviewed to remove the
variants inconsistent with the role of the genes (for example, inactivating mutations in oncogenes). For the GENIE cohort, the standard
Mutation Annotation Format (MAF) file was not available and therefore, we obtained functional mutations defined by cBioPortal, in which
variants were classified into putative drivers or variants of uncertain significance based on OncoKB and Cancer Hotspots.

For the functional CNAs, we focused on the alterations of single genes rather than regions of interest (ROls) since the CNAs at the
ROl level are less interpretable and translational. Therefore, we curated the functional CNAs of translational value by reviewing liter-
atures and several knowledge bases, including ClVic (civicdb.org), JAX-CKB (ckb.jax.org), OncoKB (oncokb.org), PMKB (pmkb.
weill.cornell.edu), and MolecularMatch (molecularmatch.com).

Finally, all functional alterations were included in a binary genomic alteration matrix (GAM). Eight GAM files were generated sepa-
rately for the FUSCC-BRCA, FUSCC-ClinSeq, TCGA-BRCA, MSK-IMPACT, METABRIC, MSK-MetTropism, PCAWG, and GENIE
cohorts separately.

Pathogenicity prioritization of germline mutations

Pathogenicity of germline variants were prioritized by CharGer”® and InterVar’’ (github.com/WGLab/InterVar), which are programs
designed for automated interpretation of genetic variants based on the ACMG-AMP guidelines. First, we curated a list of cancer pre-
disposing genes by combining the gene lists provided by ACMG,'°” CharGer,”® PathoMan,”® and Rahman.'°® Germline variants of
the cancer predisposition genes classified as pathogenic or likely pathogenic by both InverVar and CharGer were considered dele-
terious variants. We then reviewed the ClinVar database to manually resolve the inconsistent annotations between these two pro-
grams and only included variants classified as pathogenic or likely pathogenic. Additionally, inconsistent annotations were reanno-
tated by a third program, PathoMan, to check the assigned ACMG criteria among all three programs. The inconsistency was
addressed by a literature review to determine pathogenicity. Finally, the list was manually reviewed to remove the variants inconsis-
tent with the role of the genes (for example, inactivating mutations in oncogenes). The pathogenic germline variants of the FUSCC-
BRCA and FUSCC-ClinSeq cohorts were also incorporated in the corresponding GAM files.

SELECT analysis

The identification co-occurrence or mutual exclusivity of genetic alterations was performed utilizing the SELECT algorithm imple-
mented through the select R package (version 1.6).'%'® SELECT was run with the GAM as the input, allowing all alteration pairs
to be analyzed in an unbiased way without any a priori assumptions. Only genomic events occurring in at least 5 samples were re-
tained in the GAM file. To estimate the expected background signal, 5,000 random matrices were generated to establish a null model,
while the remaining parameters were maintained at their default. Consistency in the analysis was ensured by employing the same
parameters for SELECT across all assessments. For enhanced stability and minimization of variance stemming from the seed
used for null model generation, SELECT was executed ten times with ten different seeds, and the median SELECT score for each
co-occurrence and mutual exclusivity was determined. The threshold of SELECT score significance was determined using the
“establish_APC_threshold” function. Co-occurrence and mutual exclusivity were considered significant when their SELECT score
exceeded the threshold. For subtype-specific analysis, limitations in sample numbers and alteration events occurring more than
five occurrences precluded precise background signal estimation to derive the average sum correction score essential for
SELECT score computation. Consequently, in cases with a small number of hypotheses, significance was determined using the p
value of weighted mutual information (wMlI) to identify significant events.

Tumor mutation burden estimation

Tumor mutation burden (TMB) was defined as the number of protein-altering somatic mutations per megabase (muts/Mb) within the
coding region of the captured exome (35.618 Mb in our study). Protein-altering mutations were defined as missense, nonsense,
nonstop, splice site, translation start site mutations, in-frame and frameshift insertions and deletions.

Deciphering mutational signatures and copy number signatures

Mutational signatures of single-base substitutions (SBS), doublet-base substitutions (DBS), and small insertions and deletions (ID)
were extracted separately using SigProfiler, a well-established computational algorithm based on nonnegative matrix factorization
(NMF).79 First, mutational matrices of SBS96, DBS78, and ID83 based on the somatic mutations and their immediate sequence
context were created using SigProfilerMatrixGenerator. We then decomposed the mutational matrices of each patient into a known
set of reference signatures using SigProfilerSingleSample. The breast cancer-specific reference signatures were sourced from Signal
project for SBS and DBS,'°° while IDs were obtained from the COSMIC Portal.”®

Copy number signatures were deciphered based on the R package CINSignatureQuantification (version 1.1.2).5°

Detection of clustered mutations

Clustered mutations were detected by analyzing the inter-mutational distances (IMD) between SNV-SNV mutations. Specifically,
SigProfilerSimulator was first used to calculate an IMD threshold by comparing the mutational patterns of a given sample between
real and simulated data to ensure that the clustered events were unlikely to occur by chance.”'® We simulated all somatic mutations in
each sample 100 times and determined the IMD threshold with g < 0.1 such that 90% of the mutations below the threshold were
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clustered together. Subsequently, SigProfilerClusters with default parameters was employed to partition the clustered mutations
from non-clustered mutations and then to further subclassify all clustered mutations into (1) DBS; (2) multi-base substitutions
(MBS); (3) diffuse hypermutation (omikli), defined as the mutational events with a length of greater than 1 bp but less than the sam-
ple-specific IMD cutoff; and (4) longer events (kataegis).

Clonality analysis and genome doubling estimation
We employed EstimateClonality® for estimating the clonality of mutations and utilized Absolute algorithm® for assessing the clon-
ality of copy number alterations. “Same clone” denote instances where either of the co-occurring alterations was a clonal alteration.
“Not determined” denote instances both of the co-occurring alterations were classified as subclonal alterations.

We inferred the genome doubling status for each sample by using the R package EstimateClonality based on the copy num-
ber profile.

Estimation of homologous recombination deficiency (HRD) score

We calculated the HRD score by summing three independent scores, namely, telomeric allelic imbalance (NtAl), LOH, and large-
scale state transition (LST), based on Allele-Specific Copy Number Analysis of Tumors (ASCAT) according to previous studies,’ "’
considering the number of subchromosomal regions with allelic imbalance, the count of LOH regions, and the number of break points
between chromosomal regions.

Pathway enrichment analysis

Pathway enrichment analysis was performed and visualized based on the input gene list using the R package gprofiler2. Gene
set enrichment analysis (GSEA) was run to identify the enriched pathways and interpret transcriptomic data. Pathways were
defined by the gene set file Human_GOBP_AllIPathways_no_GO_iea_May_05_2019_symbol.gmt, which is regularly updated and
maintained by the Bader laboratory (download.baderlab.org/). GSEA was performed with the gene set size limited to a range
between 10 and 300, and 2000 permutations were performed. We then visualized the pathway network based on the
EnrichmentMap App (v.3.3) in Cytoscape(v.3.9.1). Pathway clusters were defined and annotated using the Cytoscape app
AutoAnnotate (v.1.3.5).

Network overlays

We mapped the co-occurring and mutually exclusive genetic events onto the IntAct protein-protein interactome to confirm that there
were specific biological interactions of each co-occurrence and mutual exclusivity of genomic alterations rather than a random sta-
tistical estimation. All non-protein nodes were filtered out and only nodes in Homo sapiens were kept. IntAct protein-protein interac-
tomes were accessed from the Cytoscape app IntAct.

Classification of polar metabolites and lipids

Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we classified polar metabolites by their associated KEGG
metabolic pathways. Eight classifications were determined: lipids, amino acids, carbohydrates, nucleotides, peptides, vitamins and
cofactors, xenobiotics and others. Our determination of lipid categories and main classes was based on the LIPID MAPS Structure
Database (LMSD). We detected five of eight classical lipid categories (fatty acyls [FA], glycerolipids [GL], glycerophospholipids [GP],
sphingolipids [SP], sterol lipids [ST]).

KEGG metabolic pathway-based differential abundance analysis

Differential abundance (DA) scores reflect the tendency of pathways to have higher levels of metabolites than control groups.
nonparametric DA test (in this study, the Mann-Whitney U test) is performed on all metabolites in a pathway before calculating the
score. Once the metabolites were determined to be significantly increased or decreased in abundance, the DA score was calculated
as follows: (number of metabolites increased - number of metabolites decreased)/number of measured metabolites within the
pathway. DA scores range from —1 to 1. Scoring a pathway as —1 indicated that all metabolites decreased in abundance, while
scoring as 1 indicated increased abundance of all metabolites.

112,113A

Sensitivity to gene and compound perturbation in breast cancer cell lines

We reannotated the MAF file of the cancer cell lines accessed from DepMap using Annovar and applied the same criteria to call the
functional mutations for breast cancer cell lines. While for CNAs, we determined the gene-level copy number status according to a
previous publication.'? For a given co-occurring event between gene x and gene y, we compared the cell fitness of a specific gene z
knockout between co- (harboring alterations in both gene x and gene y) and single-altered (harboring alterations in either gene x or
gene y) cancer cell lines based on the CRISPR screening data accessed from DepMap.

Prognostic effects and co-alteration-treatment interaction analysis

The prognostic value of each co-alteration was evaluated using multivariate Cox proportional hazards models adjusted for baseline
confounding factors, including age of diagnosis, tumor histology, tumor size, and lymph node status.

e9  Cancer Cell 42, 701-719.e1-e12, April 8, 2024



Cancer Cell ¢ CellP’ress

For the analysis of co-alteration-treatment interactions, we employed different endpoints depending on the treatment settings.
Distant metastasis-free survival (DMFS), pathologic complete response (pCR), and objective response rate (ORR) were used as
separate endpoints to examine the predictive role of co-alterations in the adjuvant, neoadjuvant, and advanced settings, respec-
tively. To evaluate the interaction between co-alterations and treatment on DMFS, we utilized multivariate Cox proportional hazards
models that included the baseline confounders. Similarly, for the analysis of pCR and ORR, multivariate logistic regression models
were employed, incorporating the baseline confounders. To assess the significance of the co-alteration-by-treatment interaction, the
likelihood ratio test was performed.®®'"* This test compared the reduced model, which excluded the co-alteration-by-treatment
interaction, with the competing full model that included this interaction. The predictive associations between co-alterations and treat-
ment were concluded if there was a significant (p < 0.05 and FDR < 0.25) co-alteration-by-treatment interaction.

Cell culture

The human breast cancer cell lines MCF7, HCC1937, MDA-MB-231; and human embryonic kidney (HEK) 293T cells were purchased
from the American Type Culture Collection and cultured as suggested by ATCC’s guidelines. The murine breast cancer cell lines
67NR was a gift from Y. Kang.

Plasmids and cloning procedures

The coding sequences of MYC (NM_002467.6) and Trp53 (NM_011640.3) were cloned into the pCDH-EF1-FHC (Addgene, #64874)
vector, and Myb (NM_001198914.1) were cloned into the pMSCV-Blasticidin (Addgene, #75085) vector. The coding sequences of
AURKA (NM_003600.4) were cloned into the Ubi-MCS-3FLAG-SV40-EGFP-IRES-puro vector (GENECHEM Co. Ltd, #GV358) to
generate the expression vectors. TP53 knockout cell lines were generated using lentiCRISPR v2 plasmids (Addgene, #52961).

Lentivirus production and transduction of cell lines

To produce lentiviral particles, HEK293T cells were seeded into one 10-cm dish and incubated overnight to reach approximately 80%
confluence before transfection. Transfection was performed using polyethyleneimine linear (PEI, MW 25,000, Polysciences) accord-
ing to the recommended protocol. A total of 3.6 mg of psPAX2 (Addgene, #12260) and 1.44 mg of pCMV-VSV-G (Addgene, #8454)
were used for each 10-cm dish. After transfection for 8-12 h, the medium was changed to fresh DMEM containing 10% FBS, and the
cells were incubated for another 48 h. Culture medium containing the lentiviral particles was collected and filtered through a 0.45-mm
filter to remove any remaining cells and debris. The target cells were infected for 24 h with lentiviral particles in the presence of poly-
brene to establish stable cells.

Western blotting

To prepare whole-cell lysates, the cells were lysed with 1% SDS lysis buffer (50 mM Tris pH 8.1, 1 mM EDTA, 1% SDS, 1 mM fresh
dithiothreitol, sodium fluoride, and leupeptin) supplemented with protease and phosphatase inhibitor cocktail, resolved by SDS-
PAGE under denaturing conditions and transferred onto 0.45-um PVDF membranes (Millipore). The membranes were blocked
with 10% nonfat milk in 1x TBST (0.9% NaCl, 10 mM Tris-HCI, pH 7.5, containing 0.05% Tween 20) at room temperature (RT) for
1 h and incubated with primary antibody overnight at 4°C followed by incubation with horseradish peroxidase-conjugated secondary
antibodies for 1 h at RT. Specific bands were visualized with enhanced chemiluminescence substrate (Millipore) and exposed onto an
Amersham Imager 600 (GE Healthcare).

Immunofluorescence

Cells were fixed with 4% paraformaldehyde for 15 min at RT and then blocked with 5% BSA in PBS with 0.3% Triton X-100 (Sigma) at
RT for 1 h. Primary antibodies were incubated at 4°C overnight. Antibody dilutions were as follows: gamma H2A.X (Abcam,
#ab22551, 1:200), Centrin 3 (Abcam, #ab228690, 1:200), and Alpha Tubulin (Proteintech, #66031-1-Ig, 1:200). Then, coverslips
were mounted in Antifade Mounting Medium with DAPI (Beyotime). Images were acquired using a Lecia SP5 laser-scanning confocal
microscope and LAS AF software (Leica).

Animal experiments

All animal experiments were performed according to protocols approved by the Institutional Animal Care and Use Committee of
FUSCC. Five-to-six-week-old female NOD/scid GAMMA (NSG) mice, BALB/c mice were purchased from Shanghai Chenxi Labora-
tory Animal Care Co. Ltd. and housed under SPF conditions at the animal care facility of the Experimental Animal Center of Fudan
University Shanghai Cancer Center. For xenograft models, 8 x 10° MCF7 cells expressing negative control, TP535°, AURKACE:
TP53XC_AURKACE were orthotopically injected directly into the inguinal mammary fat pads of NSG mice in 100 pL of sterile PBS
(n=8in each group). To allow MCF7 xenograft growth, one week before cell injection a 173-oestradiol-releasing pellet (Innovrsrch)
was inserted in the intra-scapular subcutaneous region. For tamoxifen drug treatment, mice inoculated with MCF7 cells expressing
negative control, TP53%°, AURKACE: TP53XC-AURKACE were administrated with oral gavage daily to either peanut oil or tamoxifen
(45 mg/kg/day in peanut oil). 1 x 10° 67NR cells expressing negative control, Trp53°F, Myb®E or Trp53°E-Myb°F were orthotopically
injected directly into the inguinal mammary fat pads of BALB/c mice in 100 pL of sterile PBS (n = 8 in each group). The isotype rat
IgG2a (BE0089, Bio X cell) or anti-PD-1 (BE0146, Bio X cell) (10 mg/kg in InVivoPure pH 7.0 Dilution Buffer per mouse, every
3 days) antibodies were administrated via i.p. injection. Tumor size was measured by caliper twice a week. Tumor volume in mm?®
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was calculated using the formula: tumor volume = 0.5 x L x W?, where L is the longest dimension and W is the perpendicular
dimension.

Drug response test of mini patient-derived xenograft (mini-PDX)

To rapidly test drug efficacy in vivo, we established mini-PDX models according to previous papers.'">"'® Tumor cells derived from
PDO models were harvested and digested into single cells. Cells were then filled into OncoVee capsules (LIDE Biotech, Shanghai,
China). Each capsule contained ~2000 cells. Capsules were implanted subcutaneously via a small skin incision with 3 capsules per
mouse (5-week-old female BALB/C-NU mouse). Mice bearing mini-PDX capsules were treated with appropriate control or drugs
(tamoxifen and olaparib) for 7 continuous days at doses of 45 mg/kg or 50 mg/kg, respectively. All these drugs were prepared by
being dissolved in DMSO, PEG300 and Tween-80 solutions. After all capsules were removed from mice, tumor cell proliferation in
each capsule was measured using the CellTiter Glo Luminescent Cell Viability Assay kit (G7571, Promega, Madison, WI, US). Tumor
cell growth inhibition rate was calculated using the published formula.''®

Preparation and culture of patient-derived organoids (PDOs)

We developed a platform for PDOs storage as previously described."'” Briefly, fresh breast cancer tissues were minced into small
fragments using sterile scalpels. The tissues fragments were then digested and resuspended in 10 mL of TAC buffer. After incubation
for 3 min to remove red blood cells, the suspension was passed through a 100 mm cell strainer (Corning). For passaging, the BME
was digested using 5 mL of harvesting solution (Trevigen, 3700-100-01) and incubated on ice for 1 h. The resulting organoids were
then centrifuged at 350 g for 5 min, washed in digestion buffer, and spun down. Next, 3 mL TrypLE Express (Invitrogen) was added to
the organoids, which were incubated at room temperature for 3 min. Mechanical dissociation was performed by pipetting to obtain
small cell clusters. Organoids were passaged at a 1:2-3 dilution every 2-3 weeks.

Drug response test of PDOs

For drug treatment of PDOs, organoids in good condition were harvested and digested into single cells. Twenty-five microliters of
organoid suspension containing 1 x 10° to 3 x 10° cells per well were added to a cell-repellent black surface in clear bottom
384-well plates (Greiner 781976-SIN). The organoids were cultured for an additional 5-6 days before drug treatments. After culturing
with drugs for 1 week, the viability of the organoid cells was evaluated using the CellTiter-Glo 3D cell viability assay (Promega, G9683)
according to the manufacturer’s instructions.

Culture of patient-derived tumor fragments (PDTFs)

Tissue materials that qualified for PDTF cultures were processed by cutting into small tumor fragments of 1-2 mm? size on ice, as
previously reported.''® Single PDTFs from different regions within a tumor were mixed to ensure uniform representation of the whole
tumor. Individual PDTFs were embedded in an artificial extracellular matrix prepared by mixing tumor medium supplemented with
1.1% sodium bicarbonate, 1 mM sodium pyruvate, 1x MEM nonessential amino acids, 2 mM L-glutamine, 10% FBS, 1% peni-
cillin-streptomycin, collagen (1 mg/mL final concentration), and ice-cold Matrigel (4 mg/mL final concentration). A 96-well plate
was coated with 40 puL of matrix per well to as a bottom layer and incubated at 37°C for 20-30 min to solidify. A single PDTF per
well was placed on top of the pre-solidified matrix, followed by a second layer of 40 uL matrix. The plates were were incubated at
37°C for another 20-30 min to allow solidification. Subsequently, 140 pL of tumor medium supplemented with either nivolumab
(20 pg/mL final concentration) or human anti--Gal-hlgG4 as a control was added to the top. Each condition was tested with eight
PDTFs, and the PDTF cultures were kept at 37°C for 48 h before flow cytometry analysis.

PDTF flow cytometry analysis

Flow cytometry analysis was performed to assess T cell infiltration and activation after culture with either nivolumab or IgG, in order to
define the tumor immune environment. The activation of T cell was detected using antibodies from BioLegend, as previous re-
ported.''® PDTFs for flow cytometry analysis were manually retrieved from the matrix and processed into single-cell suspensions
under each experimental condition by enzymatic digestion in a digestion mix consisting of DMEM/F12 medium supplemented
with 1% penicillin-streptomycin, 10% BSA, 0.5 ng/mL hydrocortisone, 5 pM Y-27632, 1x insulin, 1 mg/mL collagenase type IV (Wor-
thington), hyaluronidase (Sigma), and Pulmozyme (Sigma), for 1-2 h at 37°C with slow rotation. Digested samples were filtered with a
70 uM strainer twice, washed in PBS, and resuspended in 100 puL PBS. Fc receptor blocking agent (BioLegend) and Zombie NIR
(BioLegend) were added and incubated for 20 min at 4°C. After washing, the cells were resuspended in 50 uL of staining buffer
(BioLegend) containing the aforementioned antibodies and incubated for 20 min at 4°C. Following two washes, the cells were sus-
pended in 100 pL of cell staining buffer and subjected to flow cytometry analysis.

PDO-TILs coculture system and subsequent analyses

Primary TNBC tumor tissues were obtained from female patients with breast cancer who underwent surgery at Fudan University
Shanghai Cancer Center. PDOs were generated as we described previously. CD8" TILs from the same tissues were purified by fluo-
rescence-activated cell sorting MoFlo Astrios EQ (Beckman Coulter). PDOs were co-cultured TILs at 1:5 ratio for 2 days before anal-
ysis. Nivolumab (10 ng/mL) or vehicle were added to the anti-CD3 and anti-CD28-coated plate with culture medium as indicated.
Tumor viability was evaluated via CellTiter-Glo 3D Cell viability assay.
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Immunohistochemistry (IHC) analysis

For IHC analysis, paraffin-embedded tissue sections were subjected to the following steps: deparaffinized at 60°C for 20 min, cleared in
xylene, and a series of graded alcohols. Hematoxylin and eosin (H&E) staining was performed by staining the slides with Mayer’s hema-
toxylin (Sigma-Aldrich) and 0.1% sodium bicarbonate, followed by counterstaining with eosin Y solution (Sigma-Aldrich). For IHC, slides
were heated with saline sodium citrate buffer at 95°C-100°C, then cooled down. Subsequently, the slides were blocked with blocking
solution (2% goat serum, 2% BSA, and 0.05% Tween in PBS) at room temperature to block non-specific binding and incubated with a
primary antibody diluted in blocking solution at 4°C. Endogenous peroxidase activity was quenched with 0.3% H,0O.. Slides were then
incubated with a horseradish peroxidase (HRP)-conjugated secondary antibody (GeneTech) at RT. The staining was visualized using a
3,3'-diaminobenzidine substrate (GeneTech). Hematoxylin was used for counterstaining, and a series of graded alcohols were used for
dehydration. The positive-staining density was quantified using a computerized imaging system composed of a Leica charge-coupled
device DFC420 camera connected to a Leica DM IRE2 microscope (Leic Microsystems Imaging Solutions Ltd). The densities were deter-
mined by counting the number of positive cells in 10 high-power field of view, which corresponded to approximately 2 mm?. Anti-gamma
H2A.X (Abcam, #ab22551, 1:200) and anti-HLA Class 1 ABC (Abcam, #ab70328, 1:2000) were used for the IHC staining in our study.

QUANTIFICATION AND STATISTICAL ANALYSIS

The Mann-Whitney Wilcoxon test or Kruskal-Wallis test were applied to analyze the continuous variables, while Pearson’s chi-square
test or Fisher’s exact test was utilized to compare the categorical variables. Multivariate logistic regression was used to adjust for
covariates in the comparison analyses. DMFS was compared by the log rank test. p values were adjusted to the false discovery
rate using the Benjamini-Hochberg procedure in multiple comparisons. A p value of < 0.05 suggested statistical significance unless
otherwise stated. All analyses were performed using R version 4.1.1 (https://cran.r-project.org/).
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