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In brief

Lin et al. leverage a large-scale multi-

omics cohort and a real-world clinical

sequencing cohort to explore genetic

interactions and their impact on

treatment outcomes across various

clinical scenarios in breast cancer. These

findings underscore the importance of

making genome-informed precision

treatment decisions that consider

individual driver alterations and beyond.
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SUMMARY
Co-occurrence and mutual exclusivity of genomic alterations may reflect the existence of genetic interac-
tions, potentially shaping distinct biological phenotypes and impacting therapeutic response in breast can-
cer. However, our understanding of them remains limited. Herein, we investigate a large-scale multi-omics
cohort (n = 873) and a real-world clinical sequencing cohort (n = 4,405) including several clinical trials with
detailed treatment outcomes and perform functional validation in patient-derived organoids, tumor frag-
ments, and in vivo models. Through this comprehensive approach, we construct a network comprising
co-alterations andmutually exclusive events and characterize their therapeutic potential and underlying bio-
logical basis. Notably, we identify associations between TP53mut-AURKAamp and endocrine therapy resis-
tance, germline BRCA1mut-MYCamp and improved sensitivity to PARP inhibitors, and TP53mut-MYBamp and
immunotherapy resistance. Furthermore, we reveal that precision treatment strategies informed by co-alter-
ations hold promise to improve patient outcomes. Our study highlights the significance of genetic interac-
tions in guiding genome-informed treatment decisions beyond single driver alterations.
INTRODUCTION

Precisiononcologyhas revolutionized the therapeutic landscape in

breast cancer by introducing new therapeutic options through the

ongoingappreciationofcancergenomesandroutineapplicationof

next-generation sequencing.1–3 Genome-targeted or genome-

informed therapies, such as anti-ERBB2-targeted therapies or

PARP inhibitors (PARPi), have improved outcomes in patients

with specific genomic alterations.4While clinical successbuoysef-

forts inprecision treatment, efficacy remains limiteddue to thepre-

vailing focusonsingle driver alterations in clinical decision-making,

disregarding the impact of co-occurring genomic alterations on

clinical outcomes.5,6 Furthermore, the advent of promising agents

such as immunotherapy complicates the accurate prediction of

therapeutic responses, necessitating the identificationofnovelbio-

markers beyond single driver alterations.7 Given these challenges,

there is a compelling need to direct attention toward genetic inter-

actions to effectively guide precision treatment.

Cancer initiation is orchestrated by the convergence of genetic

alterations occurring sequentially within multiple genes, exhibit-

ing non-random and regulated patterns.8 The observed co-

occurrence or mutual exclusivity of these genetic alterations

may reflect the existence of genetic interactions, thus delineating

distinct functional relationships. Specifically, mutual exclusivity
Cancer Cell 42, 7
suggests either functional redundancy or antagonism,9 dictating

synthetic lethal interactions with therapeutic potential in patients

lacking targetable alterations.9 Conversely, co-occurrence re-

flects functional cooperation,10 suggesting synthetic rescue in-

teractions and possible resistance to treatment targeting one

of the co-alterations.11 Recent efforts have provided insights

into non-random patterns of particular driver alterations.12,13

Mutual exclusivity has been investigated across various tumor

types,12–17 while certain instances of co-occurring alterations

have presented associations with clinical outcomes and micro-

environment compositions.10,18–24 CRISPR and compound

screening have also provided evidence of the interplay between

specific oncogenic alterations.25,26 Despite a growing focus on

co-occurrence and mutual exclusivity, clinical consequences

behind these events have not been fully elucidated.

Overall, ongoing new insights into cancer genome necessitate

a focus on co-occurrence and mutual exclusivity of genomic al-

terations. To investigate their biological properties and discern

the impact on treatment outcomes, we deliver a large-scale

multi-omics cohort (FUSCC-BRCA) alongside a well-annotated

prospective targeted sequencing cohort (FUSCC-ClinSeq).

These findings may therefore improve our ability to explain vari-

ations in treatment response and complement ongoing efforts in

precision oncology.
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RESULTS

Patient samples, clinical data, and study cohorts
To systematically explore the underlying biology and clinical

relevance of co-occurring and mutually exclusive genomic alter-

ations, we established a large-scale multi-omics cohort, namely,

the FUSCC-BRCA cohort, and a prospective clinical sequencing

cohort, namely, the FUSCC-ClinSeq cohort.

FUSCC-BRCA features multi-omics data, clinicopathological

details, and clinical outcomes of 873 Asian breast cancer pa-

tients (Figure 1; Table S1). All 873 patients had both whole-

exome sequencing data on primary tumor tissues and paired

blood samples and somatic copy number alteration (CNA)

data; 842 patients had RNA sequencing data; 261 patients had

tandem mass tags-based mass spectrometry quantified protein

data; and 509 patients had metabolomic data. We used this

cohort to identify co-occurrence and mutual exclusivity of

genomic alterations, investigate their interactions with treat-

ment, and characterize their molecular biology according to

detailed annotation and complete omics data.

FUSCC-ClinSeq represents a prospective cohort of targeted

sequencing on matched tumor and blood samples from 4,405

Asian breast cancer patients, with detailed treatment records.

Notably, this cohort encompasses several clinical trials such as

NCT04613674, NCT03805399, NCT04395989, NCT04355858,

and NCT04129996. There were three subcohorts (Figure 1;

Table S1): 2,418 early-stage patients receiving surgery and adju-

vant therapy, 1,373 locally advancedpatientsundergoingneoadju-

vant therapy followed by surgery, and 614 advanced patients

receiving salvage treatment. This cohort was used to investigate

co-occurrence and mutual exclusivity involving germline alter-

ations and explore their therapeutic impact.

To comprehensively interpret the co-occurrences and mutual

exclusivities, we also included TCGA-BRCA (n = 983), MSK-

IMPACT (n = 1,918), METABRIC (n = 2,509), AACR Project

GENIE (n = 13,308), MSK-MetTropism (pan-cancer; n = 25,775),

PCAWG (pan-cancer; n = 2,922), and CPTAC breast cancer

(n = 122) cohorts for external validation and biological character-

ization (Figure 1). The clinicopathological features of different co-

horts were summarized in Table S1. Furthermore, we established

a drug-testing platform containing patient-derived organoids

(PDOs), tumor fragments (PDTFs), and in vivo xenografts or iso-

grafts for functional validation (Figure 1; Table S1).

Collectively, we established a multi-omics cohort, a clinical

sequencing cohort, and a drug-testing platform, together with

multiple external cohorts, to systematically characterize the un-

derlying biology and clinical relevance of co-occurring andmutu-

ally exclusive genetic events.

Molecular landscape of the FUSCC-BRCA cohort
We present a well-annotated landscape of the FUSCC-BRCA

cohort (Figure 2A). Consistent with previous studies,27,28 the prev-

alent genetic alterations in breast cancer included TP53 alter-

ations (47.8%), PIK3CA alterations (37.7%), and MYC amplifica-

tions (19.5%). The distribution of genomic alterations varied

among different clinical subtypes, with TP53 alterations occurring

in 78.4% of triple-negative breast cancers (TNBC) and ERBB2 al-

terations being most frequent in HER2-positive breast cancer

(85.0% in HR+HER2+ and 80.6% in HR-HER2+ subtypes).
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We then investigated the differences in the genome profiles of

the FUSCC-BRCA cohort with TCGA cohort (Figure S1A;

Table S2). Notable differences include lower occurrences of

CDH1 mutation (3.6% in FUSCC-BRCA versus 17.9% in TCGA

Caucasians; FDR < 0.001) and higher occurrences of TP53 mu-

tation (26.5% in FUSCC-BRCA versus 17.1% in TCGA Cauca-

sians; FDR = 0.006), AKT1 mutation (7.6% in FUSCC-BRCA

versus 3.4% in TCGA Caucasians; FDR = 0.035), and PIK3CA

amplifications (7.6% in FUSCC-BRCA versus 2.1% in TCGA

Caucasians; FDR = 0.004) in HR+HER2- subtype, as well as

higher prevalence of ERBB2 amplifications (82.4% in FUSCC-

BRCA versus 51.3% in TCGA Caucasians; FDR < 0.001) in

HER2+ subtype. Collectively, we presented a comprehensive

landscape and highlighted the racial disparities in genomic alter-

ations in Asian patients with breast cancer.

Selection of cancer driver genes and functional
alterations
Before identifying co-occurrences and mutual exclusivities, we

compiled a list of cancer driver genes, including 457 oncogenes,

477 tumor suppressor genes, and 75 cancer predisposition genes

(Figure S1B; Table S3). Utilizing dNdScv and MutSigCV

(Table S3), we identified four additional significantly mutated

genes in the FUSCC-BRCA cohort, namely, AMY2A, ZFPM1,

RBMXL2, and SOX10, which were also integrated into the cancer

driver gene list. In the FUSCC-BRCA cohort, HR+HER2- tumors

presented higher mutation frequencies in AMY2A, RBMXL2, and

ZFPM1 compared to TCGA Caucasians, with no notable differ-

ence observed inSOX10 (Figure S1C). Further external validations

are necessary to confirm the observed difference.

We then retained the somatic oncogenic alterations and germ-

line pathogenic/likely pathogenic variants for functional interpre-

tation of co-occurrences and mutual exclusivities. For CNAs, we

concentrated on actionable CNAs at the gene level rather than at

the region of interest level for clinical interpretability (Table S3).

We incorporated the functional alterations of the cancer driver

genes for the discovery of co-occurrences and mutual exclusiv-

ities (Figure 2A; Table S3).

Network construction of co-occurrences and mutual
exclusivities
To infer interactions between functional alterations, we per-

formed Selected Events Linked By Evolutionary Conditions

Across Human Tumors (SELECT)12,13 analysis within the entire

FUSCC-BRCA cohort accounting for breast cancer subtypes

and within individual clinical subtypes. The resulting network

comprised 50 co-occurring events and 30 mutually exclusive

events (Figure 2B; Table S3). Validated known events included

the co-occurrence of TP53 mutation and MYC amplification

and the mutual exclusivity of PIK3CA and AKT1 mutations.11

Additionally, we also identified events previously unreported,

such as co-occurring TP53mut-MYBamp. For germline variants,

only the co-occurring gBRCA1mut-MYCamp was found due to

the low prevalence and limited FUSCC-BRCA cohort size.

Therefore, we performed SELECT analysis within the FUSCC-

ClinSeq cohort separately and found additional 4 co-alterations

and 8 mutually exclusive alterations involving germline variants,

such as the co-occurring gBRCA1mut-TP53mut and the mutually

exclusive gBRCA2mut-gPALB2mut (Figure S2A).
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Figure 1. Schematic overview of the study design
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We also created a network involving hotspot mutations (Fig-

ure S2B). Interestingly, despite global mutual exclusivity in the

PI3K pathway, co-occurrence between PIK3CA.E542 and PIK3-

CA.E726 was observed, which was associated with increased

oncogenicity and sensitivity to PI3Ka inhibitors.29

To interpret the associations with breast cancer subtypes, we

compared co-alteration frequencies across different clinical and

intrinsic subtypes. Significant differences were observed for
704 Cancer Cell 42, 701–719, April 8, 2024
most events (Figures S2C and S2D). For example, TP53mut-

MYCamp and TP53mut-KRASamp were more prevalent in TNBCs

or the basal-like subtype, while PIK3CAmut-MAP3K1mut was

more common in HR+HER2- breast cancers and the luminal A

subtype.

We then focused on racial disparities and compared the fre-

quency of each co-alteration between FUSCC-BRCA and

TCGA Caucasians or African Americans (Figure S2E). After
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adjusting for the differential incidence of individual alterations,

we observed higher incidence of co-occurring TP53mut-

KRASamp within TNBCs when comparing FUSCC-BRCA with

TCGA Caucasians (10.4% in FUSCC-BRCA versus 3.3% in

TCGA Caucasians; p = 0.042).

Overall, our network highlights co-occurrence and mutual ex-

clusivity patterns in breast cancer and reveals subtype-specific

and race/ethnicity-specific distributions.

Validation of co-occurrences andmutual exclusivities in
independent cohorts
To validate the co-occurrences andmutual exclusivities, we per-

formed SELECT analysis across multiple cohorts, including

FUSCC-ClinSeq, TCGA-BRCA, MSK-IMPACT, METABRIC,

GENIE, MSK-MetTropism (pan-cancer), and PCAWG (pan-can-

cer) cohorts. Notably, 65.0% (52 out of 80) of the co-occurring

and mutually exclusive events were validated in at least one in-

dependent cohort, and 38.8% (31 out of 80) of these events

were validated in at least three cohorts. In addition, we further

complemented the validation by literature review. Overall, a total

of 68.8% (55 out of 80) of the eventswere validated in at least one

independent cohort or through a literature review (Table S4).

To confirm the biological interactions rather than a random

statistical estimation, we first investigated Euclidean distance

to discern the global diversity in transcriptomic properties and

polar and lipid metabolism. Our analysis indicated that co-

altered tumors presented the most significant diversity in these

aspects (Figure S3), highlighting the distinct biological basis

among tumors with and without co-alterations. Subsequently,

clonality analysis revealed that 92.9% (593 out of 638) of the

co-occurring genomic alterations indeed occurred within a

shared clone (Figure S4A), further supporting potential biological

interactions between the co-occurring events. Additionally, we

mapped the validated co-occurrences and mutual exclusivities

onto the IntAct protein-protein interactome. Proteins presenting

co-occurring interactions shared more interactors (nodes) than

those of mutually exclusive interactions (Figure S4B), indicating

potential functional synergy in specific biological processes.

For example, BRCA1 and MYC share 44 interactors and enrich-

ment analysis of these interactors suggested a functional collab-

oration in DNA repair pathways (Figures S4C and S4D). Similarly,

TP53 and AURKA share 13 interactors, which were enriched in

cell cycle pathways (Figures S4E and S4F). Taken together, we

statistically and biologically validated the co-occurrences and

mutual exclusivities and suggested potential functional interac-

tions in specific biological processes.

Co-alterations are associated with treatment outcomes
To provide further insight into co-alterations, we associated

these genomic events with patient survival and treatment out-
Figure 3. Associations between co-alterations and patient outcomes

(A) Association between co-alterations and patient survival. Only significant as

proportional hazards model was used to adjust for age, histology, tumor size, an

(B) Co-alteration-treatment interactions. Only significant interactions were high

(DMFS), a multivariate Cox proportional hazards model with a co-alteration-trea

lymph node status. For pathologic complete response (pCR), a multivariate logisti

adjust for age, histology, tumor size, and lymph node status. For objective respo

age. See also Table S5.
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comes (Figure 1). Our primary focus was on the prognostic ef-

fects of co-alterations with frequencies exceeding 1% on distant

metastasis-free survival (DMFS) and overall survival (OS) (Fig-

ure 3A; Table S5). Based on a multivariate Cox proportional haz-

ardsmodel adjusting for baseline factors of age, histology, tumor

size, and lymph node status, we observed that co-occurring

PIK3CAmut-FOXA1mut was associated with poorer DMFS, while

both TP53mut-MYBamp and TP53mut-CCNE1amp were indicative

of worse OS within the TNBC subtype.

Furthermore, we investigated co-occurring alterations that

might predict treatment response in adjuvant, neoadjuvant,

and advanced settings per subtypes (Figure 3B; Table S5). In

addition to prognostic effects generally associated with patient

outcomes, this investigation aimed to determine the efficacy of

a particular treatment for patients with and without a specific

co-alteration. Specifically, within the HR+HER2- subtype, we

found that TP53mut-AURKAamp carriers treated with adjuvant

tamoxifen exhibited a higher risk of distant metastasis than non-

carriers did, while TP53mut-MYCamp carriers demonstrated a

more favorable response. AmongHER2+ patients, the co-occur-

ring TP53mut-CCNE1amp was associated with a higher likelihood

of achieving a pathologic complete response (pCR) when treated

with neoadjuvant trastuzumab-pertuzumab combinations. For

TNBCs, the co-occurring TP53mut-MYBamp correlated with infe-

rior immunotherapy efficacy in both the neoadjuvant and

advanced settings. In addition, advanced gBRCA1mut-MYCamp

carriers exhibited an increased objective response rate (ORR)

to PARPi.

Collectively, we provided an overview of the association be-

tween co-alterations and treatment responses in diverse set-

tings. These findings may help extend clinical interpretation

and application of next-generation sequencing for optimized

therapeutic benefit.
TP53mut-AURKAamp indicates endocrine resistance in
the HR+HER2- subtype
Initial analysis revealed an interaction between co-alterations

and treatment outcomes, warranting in-depth investigation into

their biological basis. For clinically relevant co-occurring events,

specifically the co-occurring TP53mut-AURKAamp, gBRCA1mut-

MYCamp, and TP53mut-MYBamp, we deployed a comprehensive

validation strategy encompassing diverse methodologies,

including clinical validation, multi-omics analyses, and functional

validation with mechanistic exploration (Figure 1).

Regarding the co-occurring TP53mut-AURKAamp (Figure 4A),

we found that patientswith this co-alteration treatedwith adjuvant

tamoxifen experienced a worse prognosis than did those without

this co-alteration, as confirmedbyboth univariate andmultivariate

analyses (Figures 4B and 4C). Multivariate analysis further re-

vealed a higher risk of distant metastasis in co-altered patients
sociations are highlighted (p value < 0.05 and FDR < 0.25). Multivariate Cox

d lymph node status.

lighted (p value < 0.05 and FDR < 0.25). For distant metastasis-free survival

tment interaction term was used to adjust for age, histology, tumor size, and

c regression model with a co-alteration-treatment interaction term was used to

nse rate (ORR), a multivariate logistic regression model was used to adjust for
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compared to TP53mut-AURKAwt patients (hazard ratio [HR], 3.97;

95% confidence interval [CI], 1.31–11.99; p = 0.014). We further

validated the survival difference in HR+HER2- patients within

theMETABRIC cohort, where co-alteration carriers demonstrated

worse relapse-free survival (Figure S5A).

A subsequent investigation was performed to explore the

underlying biological basis. Downstream analysis revealed upre-

gulated G2/M-related pathways, supported by comprehensive

transcriptomic, proteomic, and phospho-proteomic data (Fig-

ures 4D and S5B–S5D). Further exploration revealed increased

CNAs and expression of G2/M transition genes, suggesting po-

tential dysregulation of G2/M phase (Figure 4E). Previous investi-

gations have established the association between centrosome

amplification and AURKA expression in the context of P53 defi-

ciency.30,31 Consistently, tumors carrying co-occurring TP53mut-

AURKAamp exhibited higher centrosome amplification score and

aneuploidy score (Figure 4F), a recognized manifestation of

centrosome amplification.32 Additionally, we observed decreased

expression of CUL7 and CUL9 (Figures 4G and 4H), which was

associated with aneuploidy as reported in previous studies.33,34

Since centrosome amplification is a potential contributor to drug

resistance,35,36 these findings suggest that centrosomeamplifica-

tion may be the mechanism underlying TP53mut-AURKAamp-

induced endocrine therapy resistance.

Metabolic reprogramming has been identified as a key

mechanism of endocrine resistance.37 To investigate the asso-

ciation between TP53mut-AURKAamp and metabolic dysregula-

tion, network analyses revealed increased perturbations in lipid

metabolism rather than polar metabolism (Figures S5E–S5G).

We further conducted KEGG metabolic pathway-based

differential abundance (DA) analysis between co-altered and

single-altered tumors to determine the dysregulated metabolic

pathways associated with endocrine resistance. Interestingly,

we observed a high DA score for metabolites involved in

glycerolipid and sphingolipid metabolism (Figure S5H),

pathways associated with cell division,38 and endocrine

resistance.39
Figure 4. TP53mut-AURKAamp confers endocrine resistance in the HR+

(A) Oncoplot showing the co-occurring pattern between TP53 mutation and AUR

(B) Kaplan-Meier curves of distant metastasis-free survival in patients treated

p values were estimated and compared based on the log rank test.

(C) Adjusted hazard ratios and 95% confidence intervals of different statuses of

tional hazards model was adjusted for age, tumor size, and lymph node status.

(D) Gene set enrichment analysis showing upregulated cell cycle pathways withi

(E) Copy number alterations and gene expression in G2/M transition pathway ac

(F) Comparison of centrosome amplification (CA20 signature) and aneuploidy

Kruskal-Wallis test. ***, p < 0.001.

(G and H) Expression of CUL7 (G) and CUL9 (H) grouped by different co-alteratio

ranges. p values were obtained from logistic regression.

(I) Representative images of patient-derived organoids (PDOs) with different co-al

treated with 4OH-TAM. Data are presented as mean ± SD. Scale bar: 100 mM. p

(J) MCF7 cell lines with different genetic backgrounds through TP53 knockout (T

(K) Scheme of the generation of mini-PDX models for in vivo pharmacological te

(L) Relative viability of HR+HER2- mini-PDX models with tamoxifen treatment norm

were obtained from Student’s t test. **, p < 0.01; *, p < 0.05.

(M) Growth curves and tumor weights at the endpoint across tumors with dif

mean ± SD. p values were obtained from Student’s t test. ***, p < 0.001; ns, not

(N) Cells stained for microtubules (a-tubulin, red), centrioles (centrin-3, green), an

(O) Histogram showing the fraction of cells with centrosome amplification acros

dependent experiments. p values were obtained from Student’s t test. ***, p < 0.
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To validate the effect of TP53mut-AURKAamp co-alteration on

endocrine therapy sensitivity, we performed drug response tests

using in vitro cell lines, PDOs, in vivo mini patient-derived xeno-

graft (mini-PDX), and in vivo xenograft models. We first

compared tamoxifen sensitivity among PDOs with different co-

altered statuses and observed that PDOs harboring the

TP53mut-AURKAamp co-alteration exhibited the highest viability,

indicating a reduced response to 4OH-tamoxifen, followed by

TP53mut-AURKAwt, TP53wt-AURKAamp, and TP53wt-AURKAwt

PDOs (Figure 4I). Next, we selected the MCF7 cell line as it has

a wild-type TP53 genotype.40 Given that a significant portion of

TP53mutations in our cohort manifest as loss-of-function muta-

tions (Figure 2A), we established MCF7 cell lines with different

genetic backgrounds by knockout of endogenous TP53

(TP53KO) and stable overexpression of AURKA (AURKAOE)

(Figures 4J and S5I). In vitro viability assays demonstrated

decreased sensitivity to tamoxifen in TP53KO-AURKAOE MCF7

cells compared with the control cells (Figure S5J). Consistently,

TP53mut-AURKAamp co-altered mini-PDX models presented

decreased sensitivity to endocrine therapy (Figures 4K and 4L).

In vivo xenograft assays further confirmed larger tumor volumes

in TP53KO-AURKAOE models compared to other groups

following tamoxifen treatment (Figure 4M). These data collec-

tively suggested an association between co-occurring

TP53mut-AURKAamp and decreased tamoxifen responsiveness.

To validate the hypothesis that TP53mut-AURKAamp could

induce centrosome amplification, we used immunofluorescence

to evaluate centrosome levels in MCF7 cells with different genetic

backgrounds.As expected,TP53KO-AURKAOEMCF7cells, repre-

senting TP53mut-AURKAamp genotype, exhibited a higher fre-

quency of centrosome amplification (Figures 4N and 4O). Given

previous reports associating centrosome amplification with drug

resistance,35,36 these results suggest that centrosome amplifica-

tion might underlie TP53mut-AURKAamp-induced resistance to

endocrine therapy. While TP53 mutation contributes to CDK2/4

dysregulation,41,42 we subsequently treated TP53mut-AURKAamp

PDOs with PF3600 (a CDK2/4/6 inhibitor) and alisertib (an
HER2- subtype

KA amplification.

with adjuvant tamoxifen harboring different statuses of TP53mut-AURKAamp.

TP53mut-AURKAamp in tamoxifen-treated patients. A multivariate Cox propor-

n the TP53mut-AURKAamp tumors.

ross tumors with different co-alteration statuses.

scores across different co-alteration statuses. p values were obtained from

n statuses. Each boxplot presented the median values and 1.5 3 interquartile

teration statuses (left) and viability of PDOs with different co-alteration statuses

values were obtained from Student’s t test. ***, p < 0.001.

P53KO) and AURKA overexpression (AURKAOE).

sts.

alized to that of vehicle treatment. Data are presented as mean ± SD. p values

ferent co-alteration statuses treated with tamoxifen. Data are presented as

significant.

d DNA (DAPI, blue) across different co-alteration statuses. Scale bar, 10 mm

s different co-alteration statuses. Error bars represent mean ± SD from 3 in-

001; **, p < 0.01. See also Figure S5.
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Figure 5. gBRCA1mut-MYCamp suggests potential response to PARP inhibitors

(A) Oncoplot showing the co-occurring pattern between germline BRCA1 mutation and MYC amplification.

(B) Objective response rate stratified by the statuses of gBRCA1mut-MYCamp within HER2-negative patients treated with PARP inhibitor. Multivariate logistic

regression was performed to obtain p values after adjusting for age, lines of previous cancer therapy, and hormone receptor status. R, responder; NR, non-
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AURKA inhibitor) to mitigate the effects of TP53 mutation and

AURKA amplification,43 respectively. This treatment substantially

inhibited both the growth of TP53mut-AURKAamp PDOs

(Figures S5K and S5L) and the occurrence of centrosome amplifi-

cation in TP53KO-AURKAOE MCF7 cells (Figure S5M).

Taken together, these findings suggest that the co-occurrence

of TP53mut-AURKAamp potentially exerts synergistic effects on

conferring endocrine resistance through G2/M dysregulation

and centrosome amplification.

Co-occurring gBRCA1mut-MYCamp as an indicator of
increased genome instability and enhanced response
to PARPi
IndividualswithgermlineBRCA1pathogenicvariantshavedemon-

strated promising responses to PARPi therapy.44 However, vari-

able efficacy within this population highlights the necessity for

refined biomarker stratification.45 We initially identified co-occur-

ring gBRCA1 mutation and MYC amplification in 56.5% of

gBRCA1-mutated patients (Figure 5A). Subsequent analysis

focused on PARPi response in gBRCA1-mutated patients with or

without MYC amplification, revealing significantly higher ORR in

co-altered patients (Figure 5B). Notably, one TNBC patient with

chestwall recurrenceharboringco-occurringgBRCA1mut-MYCamp

experienced notable tumor shrinkage after one cycle of

PARPi treatment (Figure S6A). Genetic dependency analysis of

the BRCA1mut-MYCamp cancer cell lines also indicated greater

sensitivity to the knockout of genes involved in DNA repair

(Figure S6B).

Given the divergent efficacy, we further investigated the biolog-

ical alterations caused by co-occurring MYC amplification in

gBRCA1-mutated TNBC. We observed an increased chromo-

somal instability score (Figure 5C), elevated activity of CX5 copy

number signature associated with homologous recombination

repair deficiency with replication stress (Figures 5D and S6C),

and heightened homologous recombination deficiency (HRD)

score in co-altered tumors (Figure5E). Notably, the telomeric allelic

imbalance exhibited the most significant difference in relation to

HRD (Figure 5F), followed by loss of heterozygosity (LOH) and

large-scale state transitions (Figures 5G and 5H). Transcriptomics
(C–H) Comparisons of chromosomal instability (CIN) score (C), CX5 activity (D), hom

score (F), loss of heterozygosity score (G), and large-scale state transition score (H

presented the median values and 1.5 3 interquartile ranges. p values were obta

(I) Gene set enrichment analysis showing downregulated pathways of DNA dam

(J) Polar metabolomics correlation network based on 669 polar metabolites using

partitioned and color-coded by a graph-clustering algorithm, and the average qu

presented. Color annotation corresponds to Figure 5K.

(K) Log2 fold changes of the abundances of different categories of polar metaboli

Log2 fold change value of 0 (the dashed blue line) indicates the same level of po

presented the median values and 1.5 3 interquartile ranges.

(L) Representative images of PDOs with different co-alteration statuses. Scale b

(M) Viability of PDOs with different co-alteration statuses treated with olaparib. p v

p < 0.01; ns, not significant.

(N) Relative viability of TNBC mini-PDX models with olaparib treatment, as norm

obtained from Student’s t test. ***, p < 0.001; ns, not significant.

(O) HCC1937 (BRCA1mut) and MDA-MB-231 (BRCA1wt) cell lines with different g

(P) Representative images (left) and quantification (right) of immunofluorescence

with DAPI (blue). Data are presented as mean ± SD. Scale bar, 10 mm. p values

(Q) Immunohistochemical staining of gammaH2A.X (phospho Ser139). Each boxplo

p values were obtained via Student’s t test. *, p < 0.05; ns, not significant.

(R) Western blot analysis of gamma H2A.X (phospho Ser139) in HCC1937 and MD
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analysis further supported downregulated DNA repair pathways

(Figure 5I). The collective data suggested elevated DNA damage

anddecreased repair capacitywithingBRCA1mut-MYCamp tumors.

We then focused on the dysregulated metabolism associated

with co-occurring gBRCA1mut-MYCamp. Network analyses re-

vealed downregulated lipid metabolism (Figure S6D), but not

glycerolipid metabolism (Figure S6E). In addition, co-altered tu-

mors exhibited notable difference from single-altered tumors in

terms of polar metabolism (Figure 5J), particularly in nucleotide

metabolism (Figure 5K). Previous studies have confirmed that

dysregulation of nucleotide metabolism is associated with

increased DNA damage.46,47 Metabolic pathway-based DA

analysis also supported the upregulated nucleotide metabolism

and glycerolipids (Figure S6F). Overall, the co-altered tumors ex-

hibited distinct metabolic patterns.

Subsequently, we validated the impact of co-occurring

gBRCA1mut-MYCamp on PARPi sensitivity by employing PDOs

and in vivo mini-PDX models. Initial investigations using PDOs

revealed reduced viability of gBRCA1mut-MYCamp compared to

gBRCA1mut-MYCwt when exposed to olaparib, whereas no sig-

nificant difference was observed between gBRCA1wt-MYCamp

and gBRCA1wt-MYCwt PDOs (Figures 5L and 5M). Consistently,

mini-PDX models with gBRCA1mut-MYCamp exhibited increased

sensitivity to PARPi (Figure 5N). These data collectively sup-

ported the association between co-occurring gBRCA1mut-MY-

Camp and improved PARPi sensitivity.

Multi-omics analysis revealed that gBRCA1mut-MYCamp tumors

exhibit increased DNA damage, rendering them more susceptible

to PARPi. To validate this hypothesis, we selected MDA-MB-231

and HCC1937 cell lines as representative models with wild-type

and mutant BRCA1 genotypes, respectively.48 We stably overex-

pressedMYC (MYCOE) or vector control (VecOE) in these cell lines

to mimic distinct genetic backgrounds (Figures 5O and S6G).

Immunofluorescence revealed an elevated level of gamma

H2A.X, a marker of double-strand breaks,49 within the BRCA1mut-

MYCOEHCC1937 cell line (Figure 5P). Immunohistochemical stain-

ing for gammaH2A.X further confirmed increased staining intensity

in gBRCA1mut-MYCamp tumors (Figure 5Q). Additionally, we

observed that MYC overexpression induced DNA damage, as
ologous recombination deficiency (HRD) score (E), telomeric allelic imbalance

) between gBRCA1mut-MYCamp and gBRCA1mut-MYCwt TNBCs. Each boxplot

ined from logistic regression.

age repair within the gBRCA1mut-MYCamp tumors.

Spearman correlation >0.4 and FDR < 0.05 cutoff. Correlation networks were

antification of different co-alteration statuses in the correlation networks was

tes in co-altered TNBC tissues as compared with single-altered TNBC tissues.

lar metabolites abundance between tumor and normal tissues. Each boxplot

ar: 100 mM.

alues were obtained from Student’s t test. Data are presented asmean ± SD. **,

alized to vehicle treatment. Data are presented as mean ± SD. p values were

enetic backgrounds by stably overexpressing MYC (MYCOE).

staining of gamma H2A.X (phospho Ser139) (green) foci. Nuclei were stained

were obtained via Student’s t test. ***, p < 0.001.

t presented themedian values and 1.53 interquartile ranges. Scale bar: 100 mm.

A-MB-231 cell lines with or without MYC overexpression. See also Figure S6.
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evidenced by increased level of gamma H2A.X (phospho Ser139)

(Figure 5R).

Taken together, these findings suggest increased DNA dam-

age, providing a rationale for the enhanced sensitivity to PARPi.

Associations of TP53mut-MYBamp with decreased
immune infiltration and immunotherapy resistance
Previous studies have highlighted the impact of co-occurring

oncogenic alterations on tumor microenvironment (TME) and

immunotherapy efficacy.10 Accordingly, we examined the associ-

ations between co-alterations and immunotherapy response.

Initial investigation identified the co-occurrence of TP53mutation

and MYB amplification (Figure 6A). As previously stated,

compared to non-carriers in TNBC, TP53mut-MYBamp carriers ex-

hibited a worse prognosis (Figure 6B), a lower likelihood of

achieving pCR in the neoadjuvant setting (Figure 6C), and a lower

ORR in the advanced setting (Figure 6D). Notably, advanced pa-

tients harboring co-occurring TP53mut-MYBamp also exhibited

poorer progression-free survival when treated with immuno-

therapy (Figure 6E).

Given the divergent immunotherapy response across different

co-alteration statuses, we investigated the underlying biological

properties of TP53mut-MYBamp tumors. Interestingly, we

observed an increased neoantigen burden within TP53mut-MY-

Bamp tumors compared to non-co-altered tumors (Figure 6F).

However, further analysis revealed a significantly higher inci-

dence of LOH of human leukocyte antigen (HLA-LOH) in

TP53mut-MYBamp tumors (Figure 6G). Co-altered tumors further

exhibited downregulated pathways related to immune response

and antigen presentation (Figure 6H). Consistently, immunohis-

tochemistry confirmed a decreased human leukocyte antigen-I

expression in TP53mut-MYBamp tumors (Figure 6I). We also

observed increased metabolic dysregulation within the co-

altered tumors (Figure S7A). Metabolic pathway-based DA

analysis revealed global upregulation of lipid metabolism (Fig-
Figure 6. Associations of TP53mut-MYBamp with response to immune c

(A) Oncoplot showing the co-occurring pattern between TP53 mutation and MYB

(B) Kaplan-Meier curves of overall survival in patients with TNBC harboring differe

was used to obtain hazard ratios and p values, adjusting for confounders of age

(C) Pathologic complete response rate stratified by the statuses of TP53mut-MYBa

logistic regression was performed to obtain p values after adjusting for age, hist

(D) Objective response rate stratified by the statuses of TP53mut-MYBampwithin ad

logistic regression model. R, responder; NR, non-responder.

(E) Kaplan-Meier curves of progression-free survival by the status of TP53mut-M

model was used to estimate the hazard ratio and the corresponding 95% confid

(F) Levels of neoantigen load grouped by different co-alteration statuses within TN

p values were obtained from Kruskal-Wallis test.

(G) Prevalence of human leukocyte antigen loss of heterozygosity (HLA-LOH) acro

multivariate logistic regression model adjusted for age.

(H) Gene set enrichment analysis showing downregulation of immune-related pa

(I) Immunohistochemical staining of HLA and H-score quantification. Each box

100 mm. p values are from Kruskal-Wallis test.

(J) Schematic diagram of the PDO-T cell co-culture.

(K) Viability of PDOs with different co-alteration statuses treated with immunotherap

1.5 3 interquartile ranges. The p value was obtained from Student’s t test.

(L) Schematic diagram of the patient-derived tumor fragment platform.

(M) Quantification of CD3+CD8+ T cells. Each boxplot presented the median value

t test.

(N) 67NR cell lines with different genetic backgrounds by overexpressing Trp53

(O) Growth curves and tumor weights at the endpoint across tumors with differe

mean ± SD. p values were obtained from Student’s t test. ***, p < 0.001; **, p < 0
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ure S7B), with many metabolites showing a negative correlation

with tumor-infiltrating lymphocytes (Figure S7C), particularly

sphingolipids, which are recognized indicators of compromised

anti-tumor immunity.50 These findings collectively suggest an

immunosuppressive TME for TP53mut-MYBamp tumors.

To functionally test our hypothesis, we performed a PDO-T

cells co-culture experiment (Figure 6J). Notably, PDOs carrying

co-occurring TP53mut-MYBamp exhibited no significant viability

changes, whereas non-carriers showed decreased viability after

anti-PD-1 antibody treatment (Figure 6K). In addition, we em-

ployed PDTFs to evaluate the early immunological response of

human tumor tissue to ex vivo PD-1 blockade. After 48 h of incu-

bation with an anti-PD-1 antibody, we profiled the effect of PD-1

blockade on PDTFswith different co-altered statuses using T cell

activation markers as readouts (Figures 6L and S7D). Specif-

ically, non-co-altered tumors exhibited increased infiltration

and activation of CD3+CD8+ T cells after PD-1 blockade, while

TP53mut-MYBamp tumors showed slight decreases (Figures 6M

and S7E). To validate the function of TP53mut-MYBamp co-alter-

ation in vivo, we used the BALB/c-derived murine breast cancer

cell line 67NR, which is characterized by Trp53 deficiency.51

Next, we stably overexpressed Trp53 (Trp53OE) or Myb (MybOE)

in 67NR cell lines to mimic different genetic backgrounds

(Figures 6N and S7F). The in vivo isograft assay showed that

the VecOE-MybOE 67NR cell line, mimicking the Trp53mut-

Mybamp genotype, had significantly larger tumor volume than

other groups after PD-1 blockade (Figure 6O).

Taken together, these findings provide further support for the

association of the TP53mut-MYBamp co-alteration with decreased

immune infiltrations and compromised immunotherapy efficacy.

Co-alteration-informed precision treatment strategies
to improve patient outcomes
Since we have provided a comprehensive overview of the asso-

ciation of co-alterations with efficacy and biological properties,
heckpoint blockade

amplification.

nt statuses of TP53mut-MYBamp. Multivariate Cox proportional hazards model

, histology, tumor size, and lymph node status.
mpwithin TNBC patients treated with neoadjuvant immunotherapy. Multivariate

ology, tumor size, and lymph node status. R, responder; NR, non-responder.

vanced TNBCpatients treatedwith immunotherapy. p value was obtained from

YBamp within the advanced immunotherapy cohort. Cox proportional hazards

ence interval.

BC. Each boxplot presented the median values and 1.53 interquartile ranges.

ss different co-alteration statuses within TNBC. The p value was obtained from

thways within the TP53mut-MYBamp tumors.

plot presented the median values and 1.5 3 interquartile ranges. Scale bar:

y when co-cultured with T cells. Each boxplot presented the median values and

s and 1.53 interquartile ranges. p values were obtained from paired Student’s

(Trp53OE) and Myb (MybOE).

nt co-alteration statuses when treated with anti-PD-1. Data are presented as

.01; *, p < 0.05; ns, not significant. See also Figure S7.
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we then evaluated the overall benefit of co-alteration-informed

precision treatment in several clinical trial cohorts (Figure 7A).

For patients with specific co-alterations, those who received

matched therapies showed a significantly better response than

did those receiving unmatched treatments (Figure 7B). Further

analysis will be conducted when mature survival data become

available. These data further highlighted the importance of co-

alteration-informed precision treatment in improving patient

outcomes.
DISCUSSION

Ongoing appreciation of cancer genome and burgeoning

application of precision medicine prompted investigations

into the impact of co-occurring genomic alterations on both

biological properties and therapeutic efficacy. Here, we con-

structed a comprehensive network of co-occurrence and

mutual exclusivity leveraging large-scale multi-omics and

clinical sequencing cohorts. Furthermore, we provided an
Cancer Cell 42, 701–719, April 8, 2024 713
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overview of the therapeutic implications of co-alterations in

neoadjuvant, adjuvant, and advanced settings. Additionally,

we cataloged the molecular basis of several clinically relevant

co-alterations and validated the findings through functional

validation. Our findings illuminate the potential of precision

treatment strategies informed by co-alterations to enhance

patient outcomes (Figure 7C).

While several studies have offered insights into pan-cancer

co-occurring and mutually exclusive patterns, these studies

did not perform functional validation or investigate the thera-

peutic implications. Although emerging investigations have

identified selected co-occurring events associated with treat-

ment responses in advanced settings,52 our work focused on

the impact of co-alterations on clinical outcomes across adju-

vant, neoadjuvant, or advanced settings. Multi-dimensional

functional validation was further performed to elucidate the

functional relationship between co-occurring genomic alter-

ations. Furthermore, our study might be better powered to

detect new predictive biomarkers due to a larger sample size

of single cancer type, especially in the neoadjuvant cohort.

The incorporation of detailed treatment data and comprehen-

sive multi-omics dimensions further enhances the depth and

scope of our investigation. These findings should be consid-

ered together with existing evidence when determining treat-

ment approaches. Additionally, the concept of co-alteration

exhibits notable distinctions and advantages compared to pre-

vious investigations. Tumors harboring co-alterations manifest

distinctive properties in downstream pathway changes and

metabolic reprogramming, suggesting a biological interplay

between co-altered driver alterations. Particularly noteworthy

is the clinical relevance of the co-alteration concept, present-

ing potential therapeutic implications. By considering co-alter-

ations, we aim to shape genome-informed treatment deci-

sions, extending beyond the conventional emphasis on

individual driver alterations. Overall, our study aims not only

to identify robust co-occurring or mutually exclusive events

with multifaceted datasets but also, more importantly, to un-

cover the underlying relationships between these events and

clinical outcomes.

To enhance the robustness, we have validated 68.8% of the

co-occurrence and mutual exclusivity events. For the missing

validation, we acknowledge that the validation differences

may be influenced by several factors. First, the FUSCC-

ClinSeq, MSK-IMPACT, GENIE-BRCA, and MSK-MetTropism

cohorts employed targeted sequencing panels. These panels

have inherent limitations, particularly in terms of the number of

genes included in the panels and the capability to detect

CNAs, thereby leading to failed validation. Additionally, the esti-

mation of co-occurring and mutually exclusive patterns be-

tween low-frequency genomic alterations inherently involves

randomness across different cohorts. Larger cohorts provide

a more robust statistical basis for detecting and validating these

events.13 Finally, differences in clinicopathological composi-

tions and variations in frequency of genomic alterations among

diverse cohorts may contribute to the validation discrepancies

observed.

We have identified several co-alterations that influence both

biology and treatment efficacy of breast cancer. For co-occur-

ring TP53mut-AURKAamp, previous studies correlated AURKA
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expression negatively with P53 expression53 and associated

TP53 mutation and high AURKA expression with an aggressive

luminal A subtype.54 In addition, our study suggested centro-

some amplification as a potential mechanism for endocrine

resistance, reinforcing the reported link between AURKA and

centrosome amplification observed in P53 deficiency.30,31 For

co-occurring gBRCA1mut-MYCamp, MYC’s role in PARPi

response remains controversial. Multiple studies have sug-

gested MYC enhances PARPi sensitivity by inducing DNA dam-

age through alternative non-homologous end joining55,56 or im-

pairing homologous recombination.57 Papp et al. correlated

MYC amplification with strong PARPi sensitivity in ovarian can-

cer.58 Conversely, Carey et al. reported that MYC knockout re-

sensitized PARPi in TNBC.59 However, a clinical trial combining

dinaciclib (MYC downregulator) and PARPi showed limited effi-

cacy.60 Our study emphasized MYC amplification/overexpres-

sion over knockout.MYC’s role in DNA damage response varies

with normal levels promoting repair61 and excessive expression

increasing damage.55,56,62 Carey et al. suggested MYC pro-

motes RAD51 expression, enhancing DNA damage repair, but

efficient repair mediated by RAD51 depends on BRCA1.63,64

Consequently, in the context of germline BRCA1 mutation, co-

occurring MYC amplification contributes to elevated DNA dam-

age and decreased repair capacity, thereby enhancing PARPi

response. For co-occurring TP53mut-MYBamp, our findings re-

vealed an association with immunotherapy resistance. Despite

a high neoantigen load, these tumors exhibit impaired antigen

presentation attributed to HLA-LOH. While TP53 mutation has

been linked to HLA-LOH,65 TP53mut-MYBamp tumors showed a

higher prevalence of HLA-LOH compared to TP53mut-MYBwt tu-

mors, suggesting a potential functional interaction between

TP53mutation and MYB amplification. This finding underscores

the complex interplay between genetic alterations and shaping

the immune landscape of these tumors.

Our study has several limitations warranting consideration in

future research. First, the three co-alterations emphasized in

our study exhibit a relatively low prevalence, limiting the broad

clinical impact of our findings. Nonetheless, rather than

concentrating on specific co-occurring events, our study high-

lights that genome-informed treatment decisions should

extend beyond individual driver alterations. We will also

explore additional genetic interactions that cater to a broader

spectrum of breast cancer patients and offer more ground-

breaking targets. Second, a larger-scale multi-omics cohort

is essential to enhance the statistical power and generaliz-

ability of co-occurrence and mutual exclusivity estimation,

particularly between germline and somatic alterations. Third,

inherent biases exist due to the non-randomized nature of

treatment cohorts, necessitating validation of co-alteration-

treatment interactions in prospective settings. Finally, the cur-

rent study lacked in-depth mechanistic investigation. Ongoing

experiments aimed to elucidate the functional implications of

identified co-alterations.

Overall, we leveraged a large-scale multi-omics cohort and a

real-world clinical sequencing cohort to investigate co-occur-

rence and mutual exclusivity in breast cancer, unveiling their

therapeutic implications. These insights may complement

ongoing efforts in precision oncology to extend the clinical

benefit of genomics-guided precision treatment. With growing
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accessibility of tumor genomic sequencing, precision treatment

decisions should be based on and beyond single driver

alterations.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibody

WB: anti-Vinculin Cell Signaling Technology Cat# 13901; RRID: AB_2728768

WB: anti-p53 (1C12) Cell Signaling Technology Cat# 2524; RRID: AB_331743

WB: anti-Aurora A Abcam Cat# ab13824; RRID: AB_300667

WB: anti-c-MYC Proteintech Cat# 10828-1-AP; RRID: AB_2148585

WB: anti-c-MYB Proteintech Cat# 17800-1-AP; RRID: AB_2148029

WB (also for IHC and IF): anti-gamma

H2A.X (phospho S139)

Abcam Cat# ab22551; RRID: AB_447150

WB: Goat Anti-Rabbit IgG (H + L) HRP Kigene Cat# KWB045

WB: Goat Anti-Mouse IgG (H + L) HRP Kigene Cat# KI2663

IF: anti-Centrin 3 Abcam Cat# ab228690

IF: anti-Alpha Tubulin Proteintech Cat# 66031-1-Ig; RRID: AB_11042766

IHC: anti-HLA Class 1 ABC Abcam Cat# ab70328; RRID: AB_1269092

IF: Goat Anti-Rabbit IgG (H + L) TRITC-conjugated Affinity Cat# S0015; RRID: AB_2844803

IF: Alexa Fluor �647-conjugated AffiniPure

Goat Anti-Mouse IgG (H + L)

Jackson

ImmunoResearch

Cat# 115-605-003; RRID: AB_2338902

Ultra-LEAFTM Purified anti-human CD3 Antibody

(clone UCHT1)

BioLegend Cat# 300438; RRID: AB_2749892

Ultra-LEAFTM Purified anti-human CD28 Antibody

(clone CD28.2)

BioLegend Cat# 302934; RRID: AB_2616667

FC: Zombie-NIR BioLegend Cat# 423105

FC: AF700 anti-human CD45 (clone: 2D1) BioLegend Cat# 368513; RRID: AB_2566373

FC: PE594 anti-human CD3 Antibody (clone: UCHT1) BioLegend Cat# 300449; RRID: AB_2563617

FC: PC7 anti-human CD8a (RPA-T8) BioLegend Cat# 301012; RRID: AB_314130

FC: FITC anti-ICOS (clone: C398.4A) BioLegend Cat# 313505; RRID: AB_416329

FC: PC5.5 anti-human OX40 (clone: Ber-ACT35) BioLegend Cat# 350009; RRID: AB_10720986

FC: APC anti-human CD25 (clone: M-A251) BioLegend Cat# 356109; RRID: AB_2561976

FC: PE anti-human CD137 (clone: 4B4-1) BioLegend Cat# 309803; RRID: AB_314782

Biological samples

Tumor and normal tissue samples

(breast cancer patients)

This study FUSCC-BRCA

FUSCC-ClinSeq

Patient-derived organoids This study FUSCCPDO

Patient-derived tumor fragments This study FUSCCPDTF

Mini-PDX This study FUSCC-miniPDX

Chemicals, peptides, and recombinant proteins

polybrene Solarbio Cat# H8761

puromycin Invivogen Cat# 58-58-2

Blasticidin BasalMedia Cat# S180J0

Antibody diluent Kigene Cat# KWB027

TRIzol Reagent Invitrogen Cat# 15596018

PEI MW25000 Polysciences Cat# 23966

Opti-MEM Reduced Serum Medium,

GlutaMAX Supplement

Polysciences Cat# 51985034

DNase I Roche Cat# 10104159001

Collagenase D Roche Cat# 11088866001

Collagenase I Sigma Aldrich Cat# C0130

(Continued on next page)
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TrypLE Express Enzyme Invitrogen Cat# 12605036

red blood cell lysis buffer eBioscience Cat# 00-4300-54

Leukocyte Activation Cocktail BD Biosciences Cat# 550583; RRID: AB_2868893

Cell Staining Buffer BioLegend Cat# 420201

Fixation Buffer BioLegend Cat# 420801

Intracellular Staining Permeabilization Wash Buffer BioLegend Cat# 421002

InVivoMAb anti-mouse PD-1 (clone: RMP1-14) Bio X Cell Cat# BE0146; RRID: AB_10949053

InVivoMAb rat IgG2a isotype control (clone: 2A3) Bio X Cell Cat# BE0089; RRID: AB_1107769

InVivoPure pH 7.0 Dilution Buffer Bio X Cell Cat# IP0070

Tamoxifen Selleck Cat# S1238

4-Hydroxytamoxifen (4OH-TAM) Selleck Cat# S7827

Alisertib Selleck Cat# S1133

PF-06873600 Selleck Cat# S8816

Olaparib Selleck Cat# S1060

Nivolumab Selleck Cat# A2002

Anti-b-Gal-hIgG4 InvivoGen Cat# S228P

17b-ESTRADIOL innovrsrch Cat# SE-121-0.36mg

Matrigel Basement Membrane Matrix Corning Cat# 356234

Fc Receptor Blocking Solution Biolegend Cat# 422301

Critical commercial assays

CellTiter-Glo 3D Cell viability assay Promega Cat# G9683

Cell Counting Kit-8 Yeasen Cat# 40203ES92

BCA Protein Assay Kit Solarbio Cat# PC0020

Antifade Mounting Medium with DAPI Beyotime Cat# P0131

CellTiter Glo Luminescent Cell Viability Assay kit Promega Cat# G7571

GTVisionTM III Detection System/Mo&Rb

(Including DAB)

Gene Tech Cat# GK500710

Deposited data

FUSCC-BRCA This study NODE: OEP003358, OEP003049, and OEP000155

FUSCC-ClinSeq This study NODE: OEP001027, OEP003469,

and OEP004654

TCGA-BRCA Cancer Genome

Atlas Network

https://www.cbioportal.org;

Cancer Genome Atlas Network27

AACR GENIE breast cancer cohort AACR project https://genie.cbioportal.org; Pugh et al.66

MSK-IMPACT Razavi et al.67 https://www.cbioportal.org; Razavi et al.67

MSK-MetTropism Nguyen et al.68 https://www.cbioportal.org; Nguyenet al.68

PCAWG PCAWG https://www.cbioportal.org; ICGC/TCGA PCAWG69

METABRIC Curtis et al.28 https://www.cbioportal.org; Curtis et al.28

CPTAC breast cancer cohort Krug et al.70 https://www.cbioportal.org; Krug et al.70

Cancer Dependency Map (DepMap) The Broad Institute https://depmap.org/portal; Tsherniak et al.71

Experimental models: Cell lines

Human embryonic kidney cell line HEK293T ATCC Cat# CRL-3216; RRID: CVCL_0063

Human breast cancer cell line HCC1937 ATCC Cat# CRL-2336; RRID: CVCL_0290

Human breast cancer cell line MDA-MB-231 ATCC Cat# HTB-26; RRID: CVCL_0062

Human breast cancer cell line MCF7 ATCC Cat# HTB-22; RRID: CVCL_0031

Mouse breast cancer cell line 67NR Y. Kang Lab N/A

Experimental models: Organisms/strains

Female BALB/c mice (5 to 6-week-old) Chengxi Biotech, Shanghai N/A

Female BALB/C-NU mice (5 to 6-week-old) LIDE Biotech, Shanghai N/A

Female NSG mice (5 to 6-week-old) Chengxi Biotech, Shanghai N/A

(Continued on next page)
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Oligonucleotides

sgRNA targeting sequence: TP53:

GCATGGGCGGCATGAACCGG

This study N/A

Recombinant DNA

pCDH-EF1-FHC Addgene Cat# 64874

pMSCV-Blasticidin Addgene Cat# 75085

psPAX2 Addgene Cat# 12260

pCMV-VSV-G Addgene Cat# 8454

lentiCRISPR v2 Addgene Cat# 52961

Ubi-MCS-3FLAG-SV40-EGFP-IRES-puro GENECHEM Co. Ltd Cat# GV358

Software and algorithms

dNdScv Martincorena et al.72 https://github.com/im3sanger/dndscv

MutSigCV Lawrence et al.73 Lawrence et al.73

ANNOVAR Wang et al., 201074 https://annovar.openbioinformatics.

org/en/latest

annotateMaf The R Foundation https://www.r-project.org

oncokb-annotator Chakravarty et al.75 https://github.com/oncokb/oncokb-annotator

CharGer Huang et al.76 https://github.com/ding-lab/CharGer

InterVar Li et al.77 https://github.com/WGLab/InterVar

PathoMan Ravichandran et al.78 https://pathoman.mskcc.org

SELECT Mina et al.12,13 http://ciriellolab.org/select/select.html

SigProfiler tools Alexandrov et al.79 https://github.com/AlexandrovLab

CINSignatureQuantification Drews et al.80 https://github.com/markowetzlab/

CINSignatureQuantification

EstimateClonality McGranahan et al.81 https://bitbucket.org/nmcgranahan/

pancancerclonality/downloads

Absolute Carter et al.82 https://github.com/ShixiangWang/DoAbsolute

ASCAT Van Loo et al.83 https://github.com/VanLoo-lab/ascat

gprofiler2 The R Foundation https://www.r-project.org

GSEA The Broad Institute https://www.gsea-msigdb.org

EnrichmentMap Cytoscape APP https://apps.cytoscape.org/

apps/enrichmentmap

Gephi0.9.3 Gephi https://gephi.org

survival The R Foundation https://www.r-project.org

ComplexHeatmap Bioconductor https://bioconductor.org/packages/

release/bioc/html/ComplexHeatmap

Flowjo FlowJo, LLC https://www.flowjo.com

GraphPad Prism GraphPad https://www.graphpad.com/

scientificsoftware/prism

Biorender N/A https://biorender.com
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yi-Zhou

Jiang (yizhoujiang@fudan.edu.cn).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
Raw sequencing data for all datatypes have been deposited in TheNational Omics Data Encyclopedia (NODE) (http://www.biosino.org/

node). The processed multi-omics data and targeted sequencing data have been submitted to NODE by pasting the accession

(OEP003358, OEP003049, OEP000155, OEP001027, OEP003469, and OEP004654) into the text search box or through the URL:

http://www.biosino.org/node/project/detai/OEP003358, http://www.biosino.org/node/project/detai/OEP003049, http://www.biosino.

org/node/project/detai/OEP000155, http://www.biosino.org/node/project/detail/OEP001027, http://www.biosino.org/node/project/

detail/OEP003469, and http://www.biosino.org/node/project/detail/OEP004654. Targeted sequencing data can also be accessed by

visiting the Fudan Data Portal (https://data.3steps.cn/cdataportal/study/clinicalData?id=FUSCC_BRCA_panel_4000). Specific code

will be made available upon request to Y.-Z.J.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient samples and study cohorts
Our study incorporated data from several cohorts to discover co-occurrence andmutual exclusivity of genomic alterations and inves-

tigate their role in clinical outcomes.

Cohort 1 (FUSCC-BRCA) is amultiomics cohort comprising a total of 873Chinese breast cancer patients treated at theDepartment of

Breast Surgery at Fudan University Shanghai Cancer Center (FUSCC) between September 2009 and October 2015. Patients within this

cohort were included based on the following criteria: 1) females diagnosed with unilateral invasive breast cancer; 2) pathologic exam-

ination of tumor specimens by the Department of Pathology at FUSCC, including independently confirmed status of ER, PR, and HER2

by two experienced pathologists based on immunohistochemistry and in situ hybridization; a cutoff ofR1%positively stained cells was

adopted to indicate ER/PR positivity according to the ASCO/CAP guidelines; 3) availability of adequate frozen tissue for further exam-

ination. Patients with carcinomas in situ or inflammatory breast cancer and patientswith de novo stage IV breast cancer were excluded.

The last telephone follow-up for patients within this cohort was performed on June 30, 2021, and the median follow-up was

83.2 months (interquartile range, 67.7–92.2 months). The clinical outcomes in our study included distant metastasis-free survival

(DMFS) and overall survival (OS). DMFSwas defined as the interval from the date of surgery to the first detection of distant metastasis

or death from any cause. OSwas defined as the interval from the date of surgery to death from any cause. Patients without any events

were censored at the time of last follow-up.

Cohort 2 (FUSCC-ClinSeq) is a targeted sequencing cohort. A total of 4,405 consecutive Chinese breast cancer patients who were

treated at the Department of Breast Surgery at FUSCC between April 2018 and June 2021 were prospectively included based on the

similar inclusion criteria, including the females with unilateral invasive breast cancer whose tumor specimens were subjected to path-

ologic examination in the Department of Pathology at FUSCC. In addition, the availability of adequate fresh tissue for further exam-

ination was required.

We have also initiated several umbrella trials to practice genomics-guided precision treatment in HR + HER2-or triple-negative

breast cancer patients, including the FUSCC ICI trial (NCT04613674), FUTURE trial (NCT03805399), the FUTURE-C-PLUS trial

(NCT04129996), the FUTURE-SUPER trial (NCT04395989), and the MULAN trial (NCT04355858). Patients’ baseline characteristics

and treatment outcomes were recorded in a detailed and comprehensive way. These treatment cohorts were also included to eval-

uate the impact of co-alterations on the treatment efficacy of PARPi or immunotherapies.

Clinicopathological characteristics, the extent of the disease and details of treatment were recorded. All tissue and peripheral

blood samples included in this study were obtained after the approval of our research by the FUSCC Ethics Committee, and each

patient provided written informed consent.

External cohorts
For validation and further investigation of the biological characteristics of the co-occurrence andmutual exclusivity of genetic events,

we collected molecular profiling data of breast cancer and functional readouts of genetic and drug perturbation screening from pub-

licly available repositories (cbioportal.org; genie.cbioportal.org; depmap.org), including The Cancer Genome Atlas (TCGA), MSK-

IMPACT, METABRIC, AACR project GENIE Cohort v12.0-public, Clinical Proteomic Tumor Analysis Consortium (CPTAC), MSK-

MetTropism, PCAWG, Cancer Cell Line Encyclopedia (CCLE), and The Cancer Interaction Map (DepMap).

Data generation for the FUSCC-BRCA cohort
Sample processing for genomic DNA and total RNA extraction

For quality control (QC), wemacro-dissected frozen tumors and tumor cell percentage was confirmedR50%. DNA from frozen sam-

ples and blood cells was purified using TGuide M24 (Tiangen, Beijing). Genomic DNA purity and quantity were assessed with

NanoDrop 2000 (Thermo Scientific, Wilmington) (A260/A280 ratio 1.6–1.9). Total RNA from RNAlater-stored tissues was purified us-

ing miRNeasy Mini Kit (Qiagen #217004). RNA integrity was evaluated with Agilent 4200 Bioanalyzer and concentrations determined

by NanoDrop ND-8000 (Thermo Fisher Scientific Inc.).

Sample preparation and data generation for RNA sequencing

Libraries were constructed using a Ribo-off rRNA Depletion Kit (Vazyme #N406) for ribosomal RNA depletion, and a VAHTSUniversal

V8 RNA-seq Library Prep Kit for Illumina (Vazyme #NR605, Vazyme Biotech Co., Ltd. Nanjing) for RNA library construction. This

involved reverse-transcribing fragmented RNAs into cDNA, adding 30-terminal poly(A) modification, and attaching adapters for
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PCR library amplification. For library QC, Qubit 4.0 (Thermo Fisher Scientific Inc.) and Agilent 2200 Bioanalyzer (Agilent Inc.) were

utilized to assess concentration and fragment size distribution, respectively. Sequencing was carried out on Illumina NovaSeq plat-

forms with paired-end reads of 150 bp.

Raw Illumina data underwent demultiplexing, conversion to FASTQ files, and quantification of adapter and low-quality sequences.

HISAT2mapped sample reads to the hg38 human genome. Expression values in fragments per kilobase of transcript permillionmap-

ped reads (FPKM) were obtained through StringTie and Ballgown and genes with FPKM of 0 in over 30% of samples were excluded.

Genomic data analysis of whole-exome sequencing data

A dataset of 873 tumor/normal pairs was analyzed. Exome-sequenced reads were aligned using BWA-mem, and BAM files were

preprocessed with duplicate marking and base quality score recalibration via Sentieon Genomics tools v202010.02.84 Quality

assessment involved NGSCheckMate,85 FastQ Screen,86 FastQC,87 and Qualimap.88

Somatic variant calling

VarScan2 v2.4.289 (–min-coverage 3 –min-coverage-normal 3 –min-coverage-tumor 3 –min-var-freq 0.08 –p-value 0.10 –somatic-p-

value 0.05 –strand-filter 1), TNseq,84 and TNscope90 (Sentieon driver -t -r –algo TNscope –dbsnp –pon) were employed for somatic

mutation identification. For raw VarScan2 results, processSomatic and somaticFilter (–min-coverage 10 –min-reads2 2 2 –min-

strands2 1 –min-avg-qual 20 –p-value 0.1) were used to extract high-confidence somatic mutations and eliminate clusters of false

positives and single-nucleotide variants (SNV) calls near indels. TNseq identified and filtered variants using TNhaplotyper2 (–germli-

ne_vcf –pon –algo OrientationBias and –algo ContaminationModel), and TNfilter (–contamination –tumor_segments –orientation_

priors). Both TNseq and TNscope utilized a panel of normal (PoN) samples based on 699 normal blood samples, creating two

VCF files for identified mutations. Additionally, the location of the population germline resource containing the population allele fre-

quencies obtained from gnomAD91 were used to filter the raw TNseq results.

To obtain the final variant calls, we first removed spurious variant calls due to sequencing artifacts and employed consensus mu-

tations from at least two out of three callers for somatic mutation identification. Additional bam-readcount filtering (https://github.

com/genome/bam-readcount) was applied, considering: 1) variant allele frequency (VAF) R 5%; 2) sequencing depth in the region

R8; and 3) sequence reads supporting the variant call R4.

Germline variant calling

Pindel92 (-c all -x 4 -L -B 0 -M 3 -J hg38_ucsc_centromere.bed) and Sentieon DNAseq Haplotyper84 with default parameters were

used for germline mutation identification. Only high-confidence variants meeting the following criteria were retained: 1) for SNVs,

a minimum of 20x coverage, sequencing depth R 5 in the region for the alternative allele, and 20% VAF; 2) for indels, identified

by both Haplotyper and Pindel, or Pindel-unique calls with high confidence (at least 30x coverage and 20% VAF). All somatic and

germline variant calls were then annotated using both ANNOVAR74 and the Ensembl variant effect predictor (VEP).93

Sample preparation and data generation for copy number alteration (CNA)

TheOncoScanCNVAssay Kit (Affymetrix, Santa Clara, CA, USA) was utilized for genome-wide copy number analysis as per theman-

ufacturer’s instructions. Each tumor sample, containing 80 ng of DNA, underwent processing. Molecular inversion probes (MIPs)

were mixed with sample DNA and annealed at 58�C overnight. The annealed DNA was divided into two equal parts and incubated

with AT or GC gap-fill master mixes for ligation. Subsequently, exonuclease treatment removed unincorporated, noncircularized

MIPs and remaining genomic templates. Circularized MIPs were linearized with a cleavage enzyme, followed by two successive

PCR amplifications. Amplified products were digested with HaeIII and Exo enzymes, and small fragments containing specific sin-

gle-nucleotide polymorphism (SNP) genotypes were hybridized onto arrays.

Arrays underwent washing and staining using a GeneChip Fluidics Station 450 (Affymetrix, Santa Clara), followed by scanning with

a GeneChip Scanner 3000 7G (Affymetrix, Santa Clara). Cluster fluorescence intensity was measured to generate a DAT file. Cluster

intensity values were automatically calculated using a built-in algorithm from DAT files via GeneChip Command Console software

(Affymetrix, Santa Clara), generating a CEL file.

Analysis of SNP array data

Affymetrix OncoScan CNV SNP assays were analyzed with Chromosome Analysis Suite (ChAS) v4.1 software (Thermo Fisher Sci-

entific). A copy number reference model was built using DNA from 23 white blood cell samples and positive controls from the

OncoScan CNV Assay Kit. ChAS output was processed with ASCAT (v2.4.3)83 for segmented copy number calls, tumor ploidy,

and purity estimates. ASCAT segments were used for log2 ratio calculation by dividing by the total copy number. GISTIC2.0

(v2.0.22)94 analyzed gene-level CNV recurrence with specific parameters (-ta 0.2 -td 0.2 -genegistic 1 -smallmem 1 -broad 1

-conf 0.95 -rx 0 –brlen 0.7 -cap 3.5 –armpeel 1 -js 100). Moreover, a group of adjacent normal tissues from 23 patients was used

to filter the recurrent germline/potential false-positive calls. Based on the segment output, the probes that suggested gain or loss

in at least five patients were used with the help of Integrative Genomics Viewer to constitute a CNV file for removing recurrent germ-

line/potential false-positive calls in GISTIC2.0.

MS sample processing and data collection for proteomics
Proteome analysis

Proteins were extracted from 1 to 2mg fresh frozen tissues using 30 mL lysis buffer (6M urea, 2M thiourea, 100mM triethylammonium

bicarbonate) and digested with Lys-C and trypsin (Hualishi, Beijing) assisted by pressure-cycling technology (PCT).95,96 TMTpro

16plex label reagents labeled the peptides, with a common pooled sample as a reference control. TMT-labeled samples were

cleaned with a C18 column and fractionated using a Dionex UltiMate3000 HPLC system (Thermo Fisher Scientific, San Jose,
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USA). Peptides were consolidated into 30 fractions. Redissolved peptides were analyzed by LC-MS/MS using a DIONEX UltiMate

3000 RSLCnano System coupled with an Orbitrap Exploris 480 mass spectrometer, equipped with a FAIMS Pro in data-dependent

acquisition (DDA) mode. LC gradient analysis lasted 60 min, and other LC-MS parameters followed a previous publication.

Database search

Themass spectrometric (MS) data were analyzed by Proteome Discoverer (Version 2.4.1.15, Thermo Fisher) using the human protein

data from UniProt (version 15/07/2020, 20368). Normalization was performed against the total peptide amount. Detailed search pa-

rameters were referenced in a prior publication.97

Normalization and quality control of proteome data

The primary proteome data matrix underwent log2 transformation, column-median normalization, and removal of batch effects using

the R package limma.98 Proteins absent in over 30% of samples were excluded. Further quality evaluation methods included corre-

lation between protein and mRNA using Spearman tests and PCA analysis comparing tumor and para-tumor samples. Samples of

poor quality were excluded.

MS sample processing and data collection for metabolomics
Polar metabolomics detection

Sample quenching and extraction. Twenty-five milligrams of the sample were weighed into an EP tube, and 500 mL of extraction

solution (methanol:acetonitrile:water = 2:2:1) was added. After homogenization (35 Hz for 4 min) and sonication (5 min in an ice-water

bath), the cycle was repeated three times. The samples were then incubated for 1 h at�40�C and centrifuged at 12000 rpm for 15min

at 4�C.99 The QC sample was prepared by combining equal aliquots of the supernatants from all samples.

Chromatography separation. LC-MS/MS analyses utilized a UHPLC system (Vanquish, Thermo Fisher Scientific) with a UPLC BEH

Amide column (2.1 mm 3 100 mm, 1.7 mm), connected to a Q Exactive HFX mass spectrometer (Orbitrap MS, Thermo). The mobile

phase included 25 mmol/L ammonium acetate and 25 mmol/L ammonia hydroxide in water (pH = 9.75) (A) and acetonitrile (B). The

autosampler was set at 4�C, and the injection volume was 2 mL.

Mass spectrometry. A QE HFX mass spectrometer, known for its MS/MS spectra acquisition in information-dependent acquisition

(IDA) mode, was employed with control by Xcalibur software (Thermo). In IDA mode, the software continually assesses the full-scan

MS spectrum. ESI source conditions were set as follows: sheath gas flow rate 30 Arb, Aux gas flow rate 25 Arb, capillary temperature

350�C, full MS resolution 60,000, MS/MS resolution 7,500, collision energy 10/30/60 in NCE mode, and spray voltage 3.6 kV (positive)

or�3.2 kV (negative).

Data quality control, processing, metabolite identification and data analysis. MS raw data were converted to mzXML using

ProteoWizard software (version 3.0.19282) and processed by the XCMS R package (v3.2) for metabolomics, involving peak identi-

fication, alignment, extraction, retention time correction, and integration. The BiotreeDB database was utilized for polar metabolites.

Internal standards (IS) and QC samples assessed instrument variability. IS-induced variability was calculated by median relative

standard deviation (RSD) for added IS in each sample. For QC samples, an equal volume (10 mL) of each sample was mixed and

treated independently throughout the detection process, injecting every eight samples. QC distributions in PCA were analyzed to

assess instrument and process variability.

To ensure metabolomics data reproducibility, peaks with RSD over 30% in QC samples were filtered out. Remaining peaks were

annotated using the R package CAMERA100 based on retention time and mass-to-charge ratio (m/z) indices. The resulting data ma-

trix included retention time, m/z, and peak intensities. After removing peaks with intensity = 0 in over 50% of samples, peak areas

were normalized by isotopically labeled ISs for polar metabolomics.101 To address intra- and interbatch variations, each metabolite

peak in subject samples underwent normalization using the LOESS method based on QC samples.101 A LOESS regression model,

built on intensity drift in QC samples, predicted and corrected metabolite intensities in subject samples.101

In summary, 669 MS/MS peaks were identified for polar metabolites. Since MS/MS peaks offered clear metabolite identification

and greater reliability, our research focused on these peaks.

Lipidomic detection

Sample quenching and extraction. Twenty milligrams of the sample were weighed into an EP tube, followed by sequential addition of

200 mLwater and 480 mL extract solution (MTBE:MeOH=5: 1). After 30 s of vortexing, sampleswere homogenized at 35Hz for 4min and

sonicated for 5min in an ice-water bath. This cycle was repeated three times. Samples were then incubated at�40�C for 1 h and centri-

fugedat3,000 rpm(RCF=900 (3g),R=8.6cm) for15minat4�C.Threehundredmicrolitersofsupernatantwas transferred toa fresh tube,

andaQCsamplewas prepared bymixing equal aliquots of all supernatants, dried in a vacuumconcentrator at 37�C.Dried sampleswere

reconstituted in 150 mL of 50% methanol in dichloromethane by sonication for 10 min in an ice-water bath. After centrifugation at

13,000 rpm (RCF=16200 (3g),R=8.6cm) for 15minat4�C,120mLofsupernatantwas transferred toa freshglass vial forLC/MSanalysis.

Chromatography separation. For lipidomics data collection, UHPLC system (1290, Agilent Technologies) equipped with a Kinetex

C18 column (2.1 * 100 mm, 1.7 mm, Phenomen) was used. Mobile phase A comprised 40% water, 60% acetonitrile, and 10 mmol/L

ammonium formate. Mobile phase B comprised 10%acetonitrile and 90% isopropanol, with 50mL of 10mmol/L ammonium formate

added per 1000 mL of mixed solvent. The elution gradient was as follows: 0�12.0 min, 40%–100%B; 12.0–13.5 min, 100%B; 13.5–

13.7 min, 100%–40% B; 13.7–18.0 min, 40% B. The column temperature was 55�C. The autosampler temperature was 4�C, and the

injection volume was 3 mL (pos) or 3 mL (neg).

Mass spectrometry. Utilizing a QE mass spectrometer in DDA mode controlled by Xcalibur 4.0.27 software (Thermo), we continu-

ously evaluated full-scan MS spectra. ESI source conditions included a sheath gas flow rate of 30 Arb, Aux gas flow rate of 10 Arb,
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capillary temperature of 320�C (positive) and 300�C (negative), full MS resolution of 70,000, MS/MS resolution of 17,500, collision

energy of 15/30/45 in NCE mode, and spray voltage of 5 kV (positive) or �4.5 kV (negative).

Data processing, metabolite identification and data analysis. MS raw data, converted to mzXML format via ProteoWizard

(v3.0.19282) and processed by LipidAnalyzer, underwent peak identification, alignment, extraction, retention time correction,

and integration. LipidBlast database facilitated lipid annotation. QC for lipidomics followed procedures akin to polar

metabolomics.

In summary, 1,312MS/MS peaks identified for polar metabolites guided our research due to their clear identification and enhanced

reliability.

Data generation for FUSCC-ClinSeq cohort
Prospective sequencing and data generation

Tumor specimens were sent to the Chinese National Human Genome Center at Shanghai (CHGC) for deep-coverage sequencing.

Genomic sequencing, utilizing TGuide M24 (Tiangen, Beijing), was conducted on fresh frozen tumor DNA and normal DNA from pe-

ripheral blood mononuclear cells. DNA purity and quantity were assessed with NanoDrop 2000 (Thermo Scientific, Wilmington)

(A260/A280 ratio 1.6–1.9).

Tumor samples were sequenced using the FUSCC-BC panel (484-gene version 1 and 539-gene version 2), achievingmean depths

of coverage at 10003 for tissue and 4003 for blood. The panel targets mutations, small insertions/deletions, and copy number al-

terations. In-house RNA baits, which captured all protein-coding exons of the target genes, were produced from an oligo pool syn-

thesized by Synbio Technologies (Suzhou). The oligo pool converted into double-stranded DNA with integrated T7 promoter sites,

transcribed into biotinylated RNA, which was then purified, quantified, and used for target enrichment.

Tumor andmatched normal blood samples were concurrently sequenced. Each DNA sample (R10 ng) obtained after SYBRGreen

quantification underwent fragmentation using a CovarisM220, followed by terminal repair, A-tailing, and adapter ligation with a KAPA

HyperPlus kit (Kapa Biosystems) as per themanufacturer’s protocol. Subsequently, prepped DNA (750 ng in 3.4 mL) was captured by

RNA baits, and the resulting library was purified, amplified with index primers, and quantified using a Multi-Mode Reader (BioTek).

Pooled libraries were sequenced on an Illumina HiSeq X TEN platform (Illumina Inc., San Diego). Data collection employed Illumina

Real-Time Analysis (RTA), and assembly into fastq files was performed using Illumina Bcl2Fastq2. An in-house bioinformatics pipe-

line, adhering to the general variant calling procedure, was employed for variant calling and coverage analysis of each capture region.

High-quality reads weremapped to the hg19 version of the human reference genome (GRCh37) using the BWA aligner with the BWA-

MEM algorithm and default parameters. The Genome Analysis Toolkit (GATK) was applied for local realignment of BAM files at in-

tervals with indel mismatches and recalibration of base quality scores.

Somatic variant calling

GATK (4.0.1.2.0) Mutect2102 was used to identify somatic mutations. The VCF files were annotated using ANNOVAR. The variants

and annotation results were transferred into Excel spreadsheets. A panel of normal (PoN) samples was used to screen out expected

germline variations and artifacts for improving specificity. Each alteration identified by the pipeline was manually reviewed to confirm

that no false-positive variants were reported. SAMtools (V1.10) andGATKwere used to acquire the sequencing quality statistics. The

FACETS algorithm103 was used to detect gene-level amplification and deletion.

GATK (4.0.1.2.0) Mutect2102 identified somatic mutations, and ANNOVAR annotated the VCF files. A panel of normal (PoN) sam-

ples was used to screen out expected germline variations and artifacts. Manual review ensured no false-positive variants.

Sequencing quality statistics were obtained using SAMtools (V1.10) andGATK. The FACETS algorithm103 detected gene-level ampli-

fication and deletion.

Germline variant calling

GATK (4.0.1.2.0) HaplotypeCaller104 identified germline SNVs and germline indels, retaining high-confidence variants based on

criteria: (1) protein-altering or splice site variants; (2) minimum 20x coverage, allelic depth (AD) R 10 for the alternative allele, and

VAF R 30%.

List of cancer driver genes
We have assembled a list of cancer driver genes based on four sources: 1) the cancer gene list curated by OncoKB (oncokb.org)75; 2)

genes recorded as oncogenes or tumor suppressor genes (TSGs) by the Cancer Gene Census105; 3) previously published and func-

tionally validated oncogenic driver genes reported by Bailey et al.106; 4) the compendium of mutational cancer driver genes from In-

tegrated OncoGenomics (intogen.org).

We also determined the significantly mutated genes (SMG) in the FUSCC-BRCA cohort by using the dNdScv72 and MutSigCV.73

Genes with global q < 0.05 by these two methods were retained and intersected. We then took the union set of the cancer driver

genes and the SMGs as the cancer genes in the FUSCC-BRCA cohort.

Curation of functional variants
We classified the mutations in cancer genes as functional or neutral based on several criteria. For TSGs, truncating variants, namely

frameshift insertions/deletions, nonsensemutations, and essential splicingmutations,were considered putative functional. For both on-

cogenes andTSGs, hotspotmutations in theCancerHotspotsdatabaseandoncogenic/likely oncogenicmutations in theOncoKBdata-

base were retained. Hotspot mutations were annotated using the annotateMaf R package (github.com/taylor-lab/annotateMaf), and
e7 Cancer Cell 42, 701–719.e1–e12, April 8, 2024

http://oncokb.org
http://intogen.org


ll
Article
oncogenicmutationswereannotatedusingoncokb-annotator (github.com/oncokb/oncokb-annotator)75. In addition, functional variants

of the in silicopredictionbasedondbNSFPdatabaseversion3.5werealso included. Finally, the listwasmanually reviewed to remove the

variants inconsistent with the role of the genes (for example, inactivating mutations in oncogenes). For the GENIE cohort, the standard

MutationAnnotation Format (MAF) filewas not available and therefore,weobtained functionalmutations definedby cBioPortal, inwhich

variants were classified into putative drivers or variants of uncertain significance based on OncoKB and Cancer Hotspots.

For the functional CNAs, we focused on the alterations of single genes rather than regions of interest (ROIs) since the CNAs at the

ROI level are less interpretable and translational. Therefore, we curated the functional CNAs of translational value by reviewing liter-

atures and several knowledge bases, including CIVIc (civicdb.org), JAX-CKB (ckb.jax.org), OncoKB (oncokb.org), PMKB (pmkb.

weill.cornell.edu), and MolecularMatch (molecularmatch.com).

Finally, all functional alterations were included in a binary genomic alteration matrix (GAM). Eight GAM files were generated sepa-

rately for the FUSCC-BRCA, FUSCC-ClinSeq, TCGA-BRCA, MSK-IMPACT, METABRIC, MSK-MetTropism, PCAWG, and GENIE

cohorts separately.

Pathogenicity prioritization of germline mutations
Pathogenicity of germline variants were prioritized by CharGer76 and InterVar77 (github.com/WGLab/InterVar), which are programs

designed for automated interpretation of genetic variants based on the ACMG-AMP guidelines. First, we curated a list of cancer pre-

disposing genes by combining the gene lists provided by ACMG,107 CharGer,76 PathoMan,78 and Rahman.108 Germline variants of

the cancer predisposition genes classified as pathogenic or likely pathogenic by both InverVar and CharGer were considered dele-

terious variants. We then reviewed the ClinVar database to manually resolve the inconsistent annotations between these two pro-

grams and only included variants classified as pathogenic or likely pathogenic. Additionally, inconsistent annotations were reanno-

tated by a third program, PathoMan, to check the assigned ACMG criteria among all three programs. The inconsistency was

addressed by a literature review to determine pathogenicity. Finally, the list was manually reviewed to remove the variants inconsis-

tent with the role of the genes (for example, inactivating mutations in oncogenes). The pathogenic germline variants of the FUSCC-

BRCA and FUSCC-ClinSeq cohorts were also incorporated in the corresponding GAM files.

SELECT analysis
The identification co-occurrence or mutual exclusivity of genetic alterations was performed utilizing the SELECT algorithm imple-

mented through the select R package (version 1.6).12,13 SELECT was run with the GAM as the input, allowing all alteration pairs

to be analyzed in an unbiased way without any a priori assumptions. Only genomic events occurring in at least 5 samples were re-

tained in theGAMfile. To estimate the expected background signal, 5,000 randommatrices were generated to establish a null model,

while the remaining parameters were maintained at their default. Consistency in the analysis was ensured by employing the same

parameters for SELECT across all assessments. For enhanced stability and minimization of variance stemming from the seed

used for null model generation, SELECT was executed ten times with ten different seeds, and the median SELECT score for each

co-occurrence and mutual exclusivity was determined. The threshold of SELECT score significance was determined using the

‘‘establish_APC_threshold’’ function. Co-occurrence and mutual exclusivity were considered significant when their SELECT score

exceeded the threshold. For subtype-specific analysis, limitations in sample numbers and alteration events occurring more than

five occurrences precluded precise background signal estimation to derive the average sum correction score essential for

SELECT score computation. Consequently, in cases with a small number of hypotheses, significance was determined using the p

value of weighted mutual information (wMI) to identify significant events.

Tumor mutation burden estimation
Tumor mutation burden (TMB) was defined as the number of protein-altering somatic mutations per megabase (muts/Mb) within the

coding region of the captured exome (35.618 Mb in our study). Protein-altering mutations were defined as missense, nonsense,

nonstop, splice site, translation start site mutations, in-frame and frameshift insertions and deletions.

Deciphering mutational signatures and copy number signatures
Mutational signatures of single-base substitutions (SBS), doublet-base substitutions (DBS), and small insertions and deletions (ID)

were extracted separately using SigProfiler, a well-established computational algorithm based on nonnegative matrix factorization

(NMF).79 First, mutational matrices of SBS96, DBS78, and ID83 based on the somatic mutations and their immediate sequence

context were created using SigProfilerMatrixGenerator. We then decomposed the mutational matrices of each patient into a known

set of reference signatures using SigProfilerSingleSample. The breast cancer-specific reference signatureswere sourced fromSignal

project for SBS and DBS,109 while IDs were obtained from the COSMIC Portal.79

Copy number signatures were deciphered based on the R package CINSignatureQuantification (version 1.1.2).80

Detection of clustered mutations
Clustered mutations were detected by analyzing the inter-mutational distances (IMD) between SNV-SNV mutations. Specifically,

SigProfilerSimulator was first used to calculate an IMD threshold by comparing the mutational patterns of a given sample between

real and simulated data to ensure that the clustered events were unlikely to occur by chance.110We simulated all somaticmutations in

each sample 100 times and determined the IMD threshold with q < 0.1 such that 90% of the mutations below the threshold were
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clustered together. Subsequently, SigProfilerClusters with default parameters was employed to partition the clustered mutations

from non-clustered mutations and then to further subclassify all clustered mutations into (1) DBS; (2) multi-base substitutions

(MBS); (3) diffuse hypermutation (omikli), defined as the mutational events with a length of greater than 1 bp but less than the sam-

ple-specific IMD cutoff; and (4) longer events (kataegis).

Clonality analysis and genome doubling estimation
We employed EstimateClonality81 for estimating the clonality of mutations and utilized Absolute algorithm82 for assessing the clon-

ality of copy number alterations. ‘‘Same clone’’ denote instances where either of the co-occurring alterations was a clonal alteration.

‘‘Not determined’’ denote instances both of the co-occurring alterations were classified as subclonal alterations.

We inferred the genome doubling status for each sample by using the R package EstimateClonality based on the copy num-

ber profile.

Estimation of homologous recombination deficiency (HRD) score
We calculated the HRD score by summing three independent scores, namely, telomeric allelic imbalance (NtAI), LOH, and large-

scale state transition (LST), based on Allele-Specific Copy Number Analysis of Tumors (ASCAT) according to previous studies,111

considering the number of subchromosomal regions with allelic imbalance, the count of LOH regions, and the number of break points

between chromosomal regions.

Pathway enrichment analysis
Pathway enrichment analysis was performed and visualized based on the input gene list using the R package gprofiler2. Gene

set enrichment analysis (GSEA) was run to identify the enriched pathways and interpret transcriptomic data. Pathways were

defined by the gene set file Human_GOBP_AllPathways_no_GO_iea_May_05_2019_symbol.gmt, which is regularly updated and

maintained by the Bader laboratory (download.baderlab.org/). GSEA was performed with the gene set size limited to a range

between 10 and 300, and 2000 permutations were performed. We then visualized the pathway network based on the

EnrichmentMap App (v.3.3) in Cytoscape(v.3.9.1). Pathway clusters were defined and annotated using the Cytoscape app

AutoAnnotate (v.1.3.5).

Network overlays
Wemapped the co-occurring andmutually exclusive genetic events onto the IntAct protein-protein interactome to confirm that there

were specific biological interactions of each co-occurrence and mutual exclusivity of genomic alterations rather than a random sta-

tistical estimation. All non-protein nodes were filtered out and only nodes in Homo sapiens were kept. IntAct protein-protein interac-

tomes were accessed from the Cytoscape app IntAct.

Classification of polar metabolites and lipids
Using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we classified polar metabolites by their associated KEGG

metabolic pathways. Eight classifications were determined: lipids, amino acids, carbohydrates, nucleotides, peptides, vitamins and

cofactors, xenobiotics and others. Our determination of lipid categories and main classes was based on the LIPID MAPS Structure

Database (LMSD). We detected five of eight classical lipid categories (fatty acyls [FA], glycerolipids [GL], glycerophospholipids [GP],

sphingolipids [SP], sterol lipids [ST]).

KEGG metabolic pathway-based differential abundance analysis
Differential abundance (DA) scores reflect the tendency of pathways to have higher levels of metabolites than control groups.112,113 A

nonparametric DA test (in this study, the Mann–Whitney U test) is performed on all metabolites in a pathway before calculating the

score. Once the metabolites were determined to be significantly increased or decreased in abundance, the DA score was calculated

as follows: (number of metabolites increased - number of metabolites decreased)/number of measured metabolites within the

pathway. DA scores range from �1 to 1. Scoring a pathway as �1 indicated that all metabolites decreased in abundance, while

scoring as 1 indicated increased abundance of all metabolites.

Sensitivity to gene and compound perturbation in breast cancer cell lines
We reannotated the MAF file of the cancer cell lines accessed from DepMap using Annovar and applied the same criteria to call the

functional mutations for breast cancer cell lines. While for CNAs, we determined the gene-level copy number status according to a

previous publication.12 For a given co-occurring event between gene x and gene y, we compared the cell fitness of a specific gene z

knockout between co- (harboring alterations in both gene x and gene y) and single-altered (harboring alterations in either gene x or

gene y) cancer cell lines based on the CRISPR screening data accessed from DepMap.

Prognostic effects and co-alteration-treatment interaction analysis
The prognostic value of each co-alteration was evaluated using multivariate Cox proportional hazards models adjusted for baseline

confounding factors, including age of diagnosis, tumor histology, tumor size, and lymph node status.
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For the analysis of co-alteration-treatment interactions, we employed different endpoints depending on the treatment settings.

Distant metastasis-free survival (DMFS), pathologic complete response (pCR), and objective response rate (ORR) were used as

separate endpoints to examine the predictive role of co-alterations in the adjuvant, neoadjuvant, and advanced settings, respec-

tively. To evaluate the interaction between co-alterations and treatment on DMFS, we utilized multivariate Cox proportional hazards

models that included the baseline confounders. Similarly, for the analysis of pCR and ORR, multivariate logistic regression models

were employed, incorporating the baseline confounders. To assess the significance of the co-alteration-by-treatment interaction, the

likelihood ratio test was performed.52,114 This test compared the reduced model, which excluded the co-alteration-by-treatment

interaction, with the competing full model that included this interaction. The predictive associations between co-alterations and treat-

ment were concluded if there was a significant (p < 0.05 and FDR < 0.25) co-alteration-by-treatment interaction.

Cell culture
The human breast cancer cell lines MCF7, HCC1937, MDA-MB-231; and human embryonic kidney (HEK) 293T cells were purchased

from the American Type Culture Collection and cultured as suggested by ATCC’s guidelines. The murine breast cancer cell lines

67NR was a gift from Y. Kang.

Plasmids and cloning procedures
The coding sequences ofMYC (NM_002467.6) and Trp53 (NM_011640.3) were cloned into the pCDH-EF1-FHC (Addgene, #64874)

vector, and Myb (NM_001198914.1) were cloned into the pMSCV-Blasticidin (Addgene, #75085) vector. The coding sequences of

AURKA (NM_003600.4) were cloned into the Ubi-MCS-3FLAG-SV40-EGFP-IRES-puro vector (GENECHEM Co. Ltd, #GV358) to

generate the expression vectors. TP53 knockout cell lines were generated using lentiCRISPR v2 plasmids (Addgene, #52961).

Lentivirus production and transduction of cell lines
To produce lentiviral particles, HEK293T cells were seeded into one 10-cmdish and incubated overnight to reach approximately 80%

confluence before transfection. Transfection was performed using polyethyleneimine linear (PEI, MW 25,000, Polysciences) accord-

ing to the recommended protocol. A total of 3.6 mg of psPAX2 (Addgene, #12260) and 1.44 mg of pCMV-VSV-G (Addgene, #8454)

were used for each 10-cm dish. After transfection for 8–12 h, the mediumwas changed to fresh DMEM containing 10% FBS, and the

cells were incubated for another 48 h. Culture medium containing the lentiviral particles was collected and filtered through a 0.45-mm

filter to remove any remaining cells and debris. The target cells were infected for 24 h with lentiviral particles in the presence of poly-

brene to establish stable cells.

Western blotting
To prepare whole-cell lysates, the cells were lysed with 1% SDS lysis buffer (50 mM Tris pH 8.1, 1 mM EDTA, 1% SDS, 1 mM fresh

dithiothreitol, sodium fluoride, and leupeptin) supplemented with protease and phosphatase inhibitor cocktail, resolved by SDS-

PAGE under denaturing conditions and transferred onto 0.45-mm PVDF membranes (Millipore). The membranes were blocked

with 10% nonfat milk in 1x TBST (0.9% NaCl, 10 mM Tris-HCl, pH 7.5, containing 0.05% Tween 20) at room temperature (RT) for

1 h and incubated with primary antibody overnight at 4�C followed by incubation with horseradish peroxidase-conjugated secondary

antibodies for 1 h at RT. Specific bandswere visualizedwith enhanced chemiluminescence substrate (Millipore) and exposed onto an

Amersham Imager 600 (GE Healthcare).

Immunofluorescence
Cells were fixed with 4%paraformaldehyde for 15min at RT and then blockedwith 5%BSA in PBSwith 0.3% Triton X-100 (Sigma) at

RT for 1 h. Primary antibodies were incubated at 4�C overnight. Antibody dilutions were as follows: gamma H2A.X (Abcam,

#ab22551, 1:200), Centrin 3 (Abcam, #ab228690, 1:200), and Alpha Tubulin (Proteintech, #66031-1-Ig, 1:200). Then, coverslips

weremounted in AntifadeMountingMediumwith DAPI (Beyotime). Images were acquired using a Lecia SP5 laser-scanning confocal

microscope and LAS AF software (Leica).

Animal experiments
All animal experiments were performed according to protocols approved by the Institutional Animal Care and Use Committee of

FUSCC. Five-to-six-week-old female NOD/scid GAMMA (NSG) mice, BALB/c mice were purchased from Shanghai Chenxi Labora-

tory Animal Care Co. Ltd. and housed under SPF conditions at the animal care facility of the Experimental Animal Center of Fudan

University Shanghai Cancer Center. For xenograft models, 8 3 106 MCF7 cells expressing negative control, TP53KO, AURKAOE,

TP53KO-AURKAOE were orthotopically injected directly into the inguinal mammary fat pads of NSG mice in 100 mL of sterile PBS

(n = 8 in each group). To allow MCF7 xenograft growth, one week before cell injection a 17b-oestradiol-releasing pellet (Innovrsrch)

was inserted in the intra-scapular subcutaneous region. For tamoxifen drug treatment, mice inoculated with MCF7 cells expressing

negative control, TP53KO, AURKAOE, TP53KO-AURKAOE were administrated with oral gavage daily to either peanut oil or tamoxifen

(45 mg/kg/day in peanut oil). 13 106 67NR cells expressing negative control, Trp53OE,MybOE or Trp53OE-MybOEwere orthotopically

injected directly into the inguinal mammary fat pads of BALB/c mice in 100 mL of sterile PBS (n = 8 in each group). The isotype rat

IgG2a (BE0089, Bio X cell) or anti-PD-1 (BE0146, Bio X cell) (10 mg/kg in InVivoPure pH 7.0 Dilution Buffer per mouse, every

3 days) antibodies were administrated via i.p. injection. Tumor size was measured by caliper twice a week. Tumor volume in mm3
Cancer Cell 42, 701–719.e1–e12, April 8, 2024 e10



ll
Article
was calculated using the formula: tumor volume = 0.5 3 L 3 W2, where L is the longest dimension and W is the perpendicular

dimension.

Drug response test of mini patient-derived xenograft (mini-PDX)
To rapidly test drug efficacy in vivo, we established mini-PDX models according to previous papers.115,116 Tumor cells derived from

PDO models were harvested and digested into single cells. Cells were then filled into OncoVee capsules (LIDE Biotech, Shanghai,

China). Each capsule contained �2000 cells. Capsules were implanted subcutaneously via a small skin incision with 3 capsules per

mouse (5-week-old female BALB/C-NU mouse). Mice bearing mini-PDX capsules were treated with appropriate control or drugs

(tamoxifen and olaparib) for 7 continuous days at doses of 45 mg/kg or 50 mg/kg, respectively. All these drugs were prepared by

being dissolved in DMSO, PEG300 and Tween-80 solutions. After all capsules were removed from mice, tumor cell proliferation in

each capsule was measured using the CellTiter Glo Luminescent Cell Viability Assay kit (G7571, Promega, Madison, WI, US). Tumor

cell growth inhibition rate was calculated using the published formula.116

Preparation and culture of patient-derived organoids (PDOs)
We developed a platform for PDOs storage as previously described.117 Briefly, fresh breast cancer tissues were minced into small

fragments using sterile scalpels. The tissues fragments were then digested and resuspended in 10mL of TAC buffer. After incubation

for 3 min to remove red blood cells, the suspension was passed through a 100 mm cell strainer (Corning). For passaging, the BME

was digested using 5 mL of harvesting solution (Trevigen, 3700-100-01) and incubated on ice for 1 h. The resulting organoids were

then centrifuged at 350 g for 5min, washed in digestion buffer, and spun down. Next, 3 mL TrypLE Express (Invitrogen) was added to

the organoids, which were incubated at room temperature for 3 min. Mechanical dissociation was performed by pipetting to obtain

small cell clusters. Organoids were passaged at a 1:2-3 dilution every 2–3 weeks.

Drug response test of PDOs
For drug treatment of PDOs, organoids in good condition were harvested and digested into single cells. Twenty-five microliters of

organoid suspension containing 1 3 103 to 3 3 103 cells per well were added to a cell-repellent black surface in clear bottom

384-well plates (Greiner 781976-SIN). The organoids were cultured for an additional 5–6 days before drug treatments. After culturing

with drugs for 1 week, the viability of the organoid cells was evaluated using the CellTiter-Glo 3D cell viability assay (Promega, G9683)

according to the manufacturer’s instructions.

Culture of patient-derived tumor fragments (PDTFs)
Tissue materials that qualified for PDTF cultures were processed by cutting into small tumor fragments of 1–2 mm3 size on ice, as

previously reported.118 Single PDTFs from different regions within a tumor were mixed to ensure uniform representation of the whole

tumor. Individual PDTFs were embedded in an artificial extracellular matrix prepared by mixing tumor medium supplemented with

1.1% sodium bicarbonate, 1 mM sodium pyruvate, 1x MEM nonessential amino acids, 2 mM L-glutamine, 10% FBS, 1% peni-

cillin‒streptomycin, collagen (1 mg/mL final concentration), and ice-cold Matrigel (4 mg/mL final concentration). A 96-well plate

was coated with 40 mL of matrix per well to as a bottom layer and incubated at 37�C for 20-30 min to solidify. A single PDTF per

well was placed on top of the pre-solidified matrix, followed by a second layer of 40 mL matrix. The plates were were incubated at

37�C for another 20-30 min to allow solidification. Subsequently, 140 mL of tumor medium supplemented with either nivolumab

(20 mg/mL final concentration) or human anti-b-Gal-hIgG4 as a control was added to the top. Each condition was tested with eight

PDTFs, and the PDTF cultures were kept at 37�C for 48 h before flow cytometry analysis.

PDTF flow cytometry analysis
Flow cytometry analysis was performed to assess T cell infiltration and activation after culture with either nivolumab or IgG, in order to

define the tumor immune environment. The activation of T cell was detected using antibodies from BioLegend, as previous re-

ported.118 PDTFs for flow cytometry analysis were manually retrieved from the matrix and processed into single-cell suspensions

under each experimental condition by enzymatic digestion in a digestion mix consisting of DMEM/F12 medium supplemented

with 1% penicillin-streptomycin, 10% BSA, 0.5 mg/mL hydrocortisone, 5 mMY-27632, 1x insulin, 1 mg/mL collagenase type IV (Wor-

thington), hyaluronidase (Sigma), and Pulmozyme (Sigma), for 1–2 h at 37�Cwith slow rotation. Digested samples were filtered with a

70 mM strainer twice, washed in PBS, and resuspended in 100 mL PBS. Fc receptor blocking agent (BioLegend) and Zombie NIR

(BioLegend) were added and incubated for 20 min at 4�C. After washing, the cells were resuspended in 50 mL of staining buffer

(BioLegend) containing the aforementioned antibodies and incubated for 20 min at 4�C. Following two washes, the cells were sus-

pended in 100 mL of cell staining buffer and subjected to flow cytometry analysis.

PDO-TILs coculture system and subsequent analyses
Primary TNBC tumor tissues were obtained from female patients with breast cancer who underwent surgery at Fudan University

Shanghai Cancer Center. PDOs were generated as we described previously. CD8+ TILs from the same tissues were purified by fluo-

rescence-activated cell sorting MoFlo Astrios EQ (Beckman Coulter). PDOs were co-cultured TILs at 1:5 ratio for 2 days before anal-

ysis. Nivolumab (10 mg/mL) or vehicle were added to the anti-CD3 and anti-CD28-coated plate with culture medium as indicated.

Tumor viability was evaluated via CellTiter-Glo 3D Cell viability assay.
e11 Cancer Cell 42, 701–719.e1–e12, April 8, 2024



ll
Article
Immunohistochemistry (IHC) analysis
For IHC analysis, paraffin-embedded tissue sectionswere subjected to the following steps: deparaffinized at 60�C for 20min, cleared in

xylene, and a series of graded alcohols. Hematoxylin and eosin (H&E) stainingwas performed by staining the slideswithMayer’s hema-

toxylin (Sigma-Aldrich) and 0.1%sodiumbicarbonate, followed by counterstaining with eosin Y solution (Sigma-Aldrich). For IHC, slides

were heated with saline sodium citrate buffer at 95�C–100�C, then cooled down. Subsequently, the slides were blocked with blocking

solution (2% goat serum, 2%BSA, and 0.05% Tween in PBS) at room temperature to block non-specific binding and incubated with a

primary antibody diluted in blocking solution at 4�C. Endogenous peroxidase activity was quenched with 0.3%H2O2. Slides were then

incubated with a horseradish peroxidase (HRP)-conjugated secondary antibody (GeneTech) at RT. The staining was visualized using a

3,30-diaminobenzidine substrate (GeneTech). Hematoxylin was used for counterstaining, and a series of graded alcohols were used for

dehydration. The positive-staining density was quantified using a computerized imaging system composed of a Leica charge-coupled

deviceDFC420cameraconnected toaLeicaDMIRE2microscope (LeicMicrosystems ImagingSolutionsLtd). Thedensitiesweredeter-

minedbycounting the number of positive cells in 10 high-power field of view,which corresponded toapproximately 2mm2. Anti-gamma

H2A.X (Abcam, #ab22551, 1:200) and anti-HLA Class 1 ABC (Abcam, #ab70328, 1:2000) were used for the IHC staining in our study.

QUANTIFICATION AND STATISTICAL ANALYSIS

TheMann–WhitneyWilcoxon test or Kruskal–Wallis test were applied to analyze the continuous variables, while Pearson’s chi-square

test or Fisher’s exact test was utilized to compare the categorical variables. Multivariate logistic regression was used to adjust for

covariates in the comparison analyses. DMFS was compared by the log rank test. p values were adjusted to the false discovery

rate using the Benjamini–Hochberg procedure in multiple comparisons. A p value of < 0.05 suggested statistical significance unless

otherwise stated. All analyses were performed using R version 4.1.1 (https://cran.r-project.org/).
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